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COURSE CONTENT 
 
 
1.    Introduction 
 
There are numerous equations that can be used to make natural gas pipeline 
flow calculations depending upon various factors, such as the magnitude of 
the pressure drop, the pipe diameter, the length of the pipeline, the Reynolds 
number, and whether the flow can be considered isothermal or adiabatic.  
This course will begin with a discussion of the gas properties needed for the 
calculations.  There will then be a presentation of the various pipeline flow 
equations and a brief identification of the type of flow for which each is 
appropriate.  Then there will be as section for each of the equations, giving 
the detailed equation and description of the parameters, along with example 
calculations of parameters such as flow rate, required diameter or pressure 
drop. 
 

                    
 

Image Credit:  Wikimedia Commons, Glen Dillon, View of Dampier to 
Bunbury Natural Gas Pipeline. 
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2. Learning Objectives 
 
At the conclusion of this course, the student will 
 

• Be familiar with the natural gas properties, density, specific gravity, 
molecular weight, compressibility factor, and viscosity, and their use 
in pipeline flow calculations. 

 
• Be able to calculate the compressibility factor for natural gas with 

specified average gas pressure and temperature and known specific 
gravity. 

 
• Be able to calculate the viscosity of natural gas with specified average 

gas pressure and temperature and known specific gravity. 
 
• Be able to obtain a value for the friction factor using the Moody 

diagram for given Re and ε/D. 
 
• Be able to calculate a value for the friction factor for specified Re and 

ε/D, using the appropriate equation for f. 
 

• Be familiar with the guidelines for when it is appropriate to use the 
Darcy Weisbach equation for natural gas pipeline flow calculations. 

 
• Be able to use the Darcy Weisbach equation and the Moody friction 

factor equations to calculate the frictional pressure drop for a given 
flow rate of a specified fluid through a pipe with known diameter, 
length and roughness. 

 
• Be able to use the Weymouth equation to calculate gas flow rate 

through a pipe with known diameter and length, elevation difference 
between pipeline inlet and outlet, specified inlet and outlet pressure 
and enough information to calculate gas properties. 

 
• Be able to use the Panhandle A equation to calculate gas flow rate 

through a pipe with known diameter and length, elevation difference 
between pipeline inlet and outlet, specified inlet and outlet pressure 
and enough information to calculate gas properties. 

 



• Be able to use the Panhandle B equation to calculate gas flow rate 
through a pipe with known diameter and length, elevation difference 
between pipeline inlet and outlet, specified inlet and outlet pressure 
and enough information to calculate gas properties. 

 
 
 
 
3.      Topics Covered in this Course 
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4.      Natural Gas Properties 
 
Natural gas properties that are used in pipeline flow calculations include 
density, specific gravity, molecular weight, compressibility factor, and 
viscosity.  Each of these natural gas properties will now be discussed briefly. 
 
Density - The density of a gas is its mass per unit volume, typically 
expressed in lbm/ft3 or slugs/ft3 in U.S. units and in kg/m3 for S.I. units.  The 
gas density is an important parameter for gas pipe flow calculations.  The 
density of any gas increases with increasing pressure and decreases with 
increasing temperature.  For relatively short lengths of pipe with small 
pressure drop, the density will not change throughout the pipe and an 
incompressible flow equation, like the Darcy Weisbach equation can be 
used.  For long pipelines with large pressure differences from inlet to outlet, 
however, the density will change appreciably and a calculation approach that 
takes the changing density of the gas into account must be used. 
 
Two other parameters related to the density are specific volume and specific 
weight.  The specific volume is the inverse of density, typically expressed in 
ft3/lbm or ft3/slug in U.S. units or m3/kg in S.I. units.  The specific weight of 
a gas is the weight per unit volume, typically expressed in lbf/ft3 in U.S. 
units or kN/m3 in S.I. units.  In equation form: 
 

specific volume of a gas  =  vgas  =  1/ρgas 
 

specific weight of a gas  =  γgas  =  (ρgas)(g) 
 
Note that g is the acceleration due to gravity (32.17 ft/sec2 or 9.81 m/s2) 
   
Specific Gravity - Specific gravity is often a known, specified parameter for 
natural gas.  The specific gravity is the ratio of the density of the gas to the 
density of air at the same temperature and pressure.  Thus, the density of the 
gas can be calculated from known specific gravity using the equation: 
 
 ρgas  =  (Ggas)(ρair)        (1) 
 
where:     Ggas is the specific gravity of a gas 



 
       ρair is the density of air at a specified temperature and pressure 
 
       ρgas is the density of the gas at the same temperature and pressure 
 
Example #1:  What is the density of a sample of natural gas of specific 
gravity 0.65 at standard temperature and pressure (60 oF and 14.7 psi)?  Note 
that the density of air at 60oF and 14.7 psi is 0.0764 lbm/ft3. 
 
Solution:  The gas density can be calculated with equation (1). 
 
 ρgas  =  (0.65)(0.0764)  =  0.050 lbm/ft3  
   
Molecular Weight - The molecular weight of a gas is the mass per mole.  
The value is the same in any of the commonly used units, lbm/lbmole, 
g/mole, or kg/kgmole.  The molecular weight and specific gravity of a 
natural gas sample are related to each other by the equation: 
 
  MWgas  =  (Ggas)(MWair)      (2) 
 
where:      MWgas is the molecular weight of the natural gas 
 
        MWair is the molecular weight of air (typical taken to be 28.97) 
 
        Ggas is the specific gravity of the natural gas 
 
 
Example #2:  What is the molecular weight of the natural gas described in 
Example #1, which has a specific gravity of 0.65? 
 
Solution:   Substituting into Equation (2) gives: 
 
  MWgas  =  (0.65)(28.97)  =  18.8  
    
Average Pipeline Pressure - Average pipeline pressure is needed for some 
natural gas pipeline flow calculations.  This average pressure is typically 
calculated with the following equation: 
 



  Pave = (2/3)[(P1
3  -  P2

3)/(P1
2  -  P2

2)]     (3) 
 
where:   P1 is the pipeline inlet pressure, and 
 
    P2 is the pipeline outlet pressure 
 
This equation gives a value for the average pipeline pressure that is slightly 
higher than the arithmetic average of the inlet and outlet pressures, as 
illustrated in the following example. 
 
 
Example #3:  Consider gas flowing through a section of pipeline with an 
inlet pressure of 1000 psig and outlet pressure of 800 psig.  Calculate the 
arithmetic average of the inlet and outlet pressures and calculate the average 
pipeline pressure using Equation (3). 
 
Solution:  The arithmetic average pressure is: 
 
PArithAvg  =  (1000 + 800)/2  =  900 psig 
 
Using Equation (3):   
 
Pave =  (2/3)[(10003 - 8003)/(10002 - 8002)]  = 903.7 psig 
 
 
 
Compressibility Factor - The compressibility factor of a gas (Z) at any 
specified temperature and pressure is a measure of the extent of its deviation 
from ideal gas law behavior at that temperature and pressure.  At 
temperatures much greater than the critical temperature of a gas and/or 
pressures much less than the critical pressure of a gas, it will follow the ideal 
gas law and the compressibility factor will be one.  If the temperature is low 
enough and/or the pressure is high enough so that the gas will not exhibit 
ideal gas behavior, then the value of the compressibility factor will be less 
than one.  
 
The ideal gas law, as modified by inclusion of the compressibility to allow 
calculations for non-ideal gases is as follows: 
 



 PV  =  ZnRT       (4) 
 
Where: P  =  the absolute pressure of the gas in psia 
 
  V  =  the volume of the gas in ft3 
 
  Z  =  the compressibility factor of the gas at the specified  
                              temperature and pressure 
 
  n  = the lbmoles of the gas 
 
  R  =  the ideal gas law constant  =  10.73 psia-ft3/lbmole-oR 
 
  T  =  the absolute temperature of the gas in oR 
 
Noting that the number of lbmoles of gas is given by the mass of the gas 
divided by its molecular weight, we can substitute n  =  m/MW into the 
ideal gas law equation and solve for the gas density (ρ = m/V) to give: 
 
  ρ  =  P(MW)/ZRT      (5) 
 
This equation can be used to calculate the density of a sample of natural gas 
at specified temperature and pressure if its molecular weight and 
compressibility factor are known. 
 
There are several graphs and equations for compressibility factor as a 
function of temperature and pressure for gases in general and for natural gas 
in particular.  One that is rather straightforward and easy to use is the CNGA 
(California Natural Gas Association) equation for the compressibility factor 
of natural gas: 

                                  (6) 
 
Where:   Z  is the compressibility factor, which is dimensionless 
      



    Pavg  is the average gas pressure in psig 
 
     Tf  is the average gas temperature in oR 
 
     G  is the specific gravity of the gas 
 
This equation may be used for average natural gas pressure greater than 100 
psig.  The compressibility factor is typically taken to be equal to one, if the 
average gas pressure is less than 100 psig. 
 
Example #4:  Determine the compressibility factor of the natural gas of 
Examples #1 and #2, which has specific gravity equal to 0.65, when it is in a 
pipeline with average pressure equal to 500 psig and temperature equal to 80 
oF. 
 
Solution:  The 80 oF temperature is equal to 80 + 460 oR  =  540 oR.  
Substituting values for Pavg, G, and Tf into Equation (4) gives: 
 
 Z  =  1/{1 +[(500)(344400)(101.785*0.65)/5403.825]} 
 
 Z  =  0.8745 
   
Viscosity -  The viscosity of a fluid is a measure of its resistance to flow, 
and hence is an important parameter in pipe flow calculations.  As a measure 
of resistance to flow, the viscosity of molasses, for example, is very high.  
The viscosity of water is much lower than that of a "thick" liquid like 
molasses, and the viscosities of gases are, in general, much lower than the 
viscosities of liquids.  Two different forms of viscosity are sometimes used.  
The first is dynamic viscosity, typically represented by the Greek letter, µ, 
and the other is kinematic viscosity, typically represented by the Greek 
letter, ν.  Typical units for dynamic viscosity are Pa-s, centipoise (cp), or 
lbf-sec/ft2.  For kinematic viscosity, the units are ft2/sec, m2/s or centistokes.  
The relationship between dynamic viscosity and kinematic viscosity is: 
 
 ν  =  µ/ρ                                                                             (7) 
 



A convenient equation for calculating the viscosity of natural gas is that of 
Lee, Gonzalez and Eakin 
 

                 (8) 

  
 
In these expressions, T is the natural gas temperature in oR,  ρg is the density 
of the gas in lbm/ft3,  MWg is the molecular weight of the gas, and µg is the 
dynamic viscosity of the gas in centipoise (cp). 
 
Example #5:  Calculate the density and viscosity of the natural gas 
described in Example #3, which has specific gravity equal to 0.65 and is in a 
pipeline with an average pressure of 500 psia and temperature of 80 oF. 
 
Solution:  From Example #2, the molecular weight of the gas is MWg = 
18.8.  From Example #3, the compressibility factor of the gas is Z = 0.8745.  
The density of the gas can now be calculated using Equation #4 as follows: 
 
 ρg  =  P(MW)/ZRT  =  (500)(18.8)/[(0.8745)(10.73)(80 + 460)] 
 
   ρg  =  1.85 lbm/ft3 
 
The viscosity of the gas can now be calculated by first calculating values 
for kv, xv, and yv, and substituting those values into Equation (8), as 
follows: 
 



     kv  =  (9.4 + 0.02*18.8)(5401.5)/(209 + 19*18.8 + 540)  =  110.9 
 
    xv  =  3.5 + (986/540) + (0.01*18.8)  =  5.514 
 
    yv  =  2.4 - (0.2*5.514)  =  1.297 
 
Substituting values into Equation (4) gives: 
 
     µg  =  (1/104)(110.9)exp[5.514(1.85/62.4)1.297]  =  0.01175 cp 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.      Laminar and Turbulent Flow in Pipes 
 
It is often useful to be able to determine whether a given pipe flow is laminar 
or turbulent.  This is necessary, because different methods of analysis or 
different equations are sometimes needed for the two different flow regimes.   
 
Laminar flow takes place for flow situations with low fluid velocity and high 
fluid viscosity.  In laminar flow, all of the fluid velocity vectors line up in 
the direction of flow.  Turbulent flow, on the other hand, is characterized by 
turbulence and mixing in the flow.  It has point velocity vectors in all 
directions, but the overall flow is in one direction.  Turbulent flow takes 
place in flow situations with high fluid velocity and low fluid viscosity.  The 
figures below illustrate differences between laminar and turbulent flow in a 
pipe. 
 

     
 
The figure at the right above illustrates the classic experiments of Osborne 
Reynolds, in which he injected dye into fluids flowing under a variety of 
conditions and identified the group of parameters now known as the 
Reynolds Number for determining whether pipe flow will be laminar or 
turbulent.  He observed that under laminar flow conditions, the dye flows in 
a streamline and doesn’t mix into the rest of the flowing fluid.  Under 
turbulent flow conditions, the turbulence mixes dye into all of the flowing 
fluid.  Based on Reynolds’ experiments and subsequent measurements, the 
criterion now in widespread use is that pipe flow will be laminar for a 
Reynolds Number (Re) less than 2100 and it will be turbulent for a Re 



greater than 4000.  For 2100 < Re < 4000, called the transition region, the 
flow may be either laminar or turbulent, depending upon factors like the 
entrance conditions into the pipe and the roughness of the pipe surface.  In 
general transition region conditions should be avoided in designing piping 
systems. 
 
The Reynolds Number for flow in pipes is defined as: Re = DVρ/µ,  where  
 

• D is the diameter of the pipe in ft (m for S.I.) 
 
• V is the average fluid velocity in the pipe in ft/sec (m/s for S.I)  (The 

definition of average velocity is: V = Q/A, where Q = volumetric flow 
rate and A = cross-sectional area of flow) 

 
• ρ is the density of the fluid in slugs/ft3 (kg/m3 for S.I.) 

 
• µ is the viscosity of the fluid in lb-sec/ft2 (N-s/m2 for S.I.) 

 
Transport of natural gas in a pipeline is typically turbulent flow.  Laminar 
flow typically takes place with liquids of high viscosity, like lubricating oils. 
 
 
Example #6:  Natural gas with a specific gravity of 0.65 is flowing at 60 cfs 
through a 12” diameter pipe with a gas temperature of 80 oF and average 
pressure of 500 psi.  What is the Reynolds number of this flow?  Is the flow 
laminar or turbulent? 
 
 
Solution:  From Example #4, the density and the viscosity of the natural gas 
are 1.85 lbm/ft3 and 0.01175 cp.  Converting to the required units for the 
Reynolds Number: 
 

ρg  =  1.85/32.17  =  0.05707 slugs/ft3   
 
 µg  =  0.01175*0.0000208854  =  2.45 x 10-7 lb-sec/ft2.  

  
The gas velocity, V, can be calculated from 

 



 V = Q/A = Q/(πD2/4) = 60/[π(1)2/4] = 76.4 ft/sec. 
 
Substituting values into Re = DVρ/µ gives: 
 Re = (1)(76.4)(0.05707)/(2.45 x 10-7), or Re = 1.78 x 107. 
 
The Reynolds Number is much greater than 4000, so the flow is turbulent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.      Options for Natural Gas Pipeline Flow Calculations 
 
One possibility for natural gas flow calculations is the Darcy-Weisbach 
equation.  This equation is for incompressible flow, and natural gas is clearly 
compressible, however, if the pressure drop is not too great, as detailed in 
the next section, the density change of the natural gas is small enough that 
the Darcy-Weisbach equation can be used.  
  
If the pressure drop is too great to allow use of the Darcy Weisbach 
equation, then an equation such as the Weymouth Equation, the Panhandle A 
Equation, the Panhandle B Equation, the General Flow Equation, the IGT 
Equation, or the AGA Method should be used.  The choice among these 
options depends upon factors such as pipe diameter, gas pressure, pipeline 
length, Reynolds number, and whether the flow can be considered 
isothermal or adiabatic.   
 
More Details are provided in the following sections.  Details of the Darcy 
Weisbach Equation, the Weymouth Equation, the Panhandle A Equation, 
and the Panhandle B Equation will be presented along with example 
calculations with each of those four equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.      The Darcy Weisbach Equation 
 
This equation is for incompressible flow, where "incompressible" can be 
interpreted as "constant density."   For natural gas flow in which the pressure 
drop is not too great, the density change of the gas is small enough that the 
Darcy-Weisbach equation can be used.  According to Crane (1988), if the 
pressure drop is less than 10% of the inlet pressure, then for an 
incompressible flow calculation, the gas density may be calculated at either 
the upstream or the downstream pressure.  If the pressure drop is between 
10% and 40% of the upstream pressure, then the density of the gas should be 
calculated at the average of the upstream and downstream pressures for use 
in an incompressible flow equation such as the Darcy Weisbach equation.   
 
The Darcy Weisbach equation is a widely used empirical relationship 
among several pipe flow variables.  The equation is:  
 
           hL = f(L/D)(V2/2g)      (9)      
 
where: 
 

• L = pipe length, ft (m for S.I. units) 
 
• D = pipe diameter, ft (m for S.I. units) 

 
• V = average velocity of fluid (= Q/A), ft/sec (m/s for S.I. units) 
 
• hL = frictional head loss due to flow at an ave. velocity, V, through a 

pipe of diameter, D, and length, L, ft (ft-lb/lb) (m or N-m/N for S.I. 
units). 

 
• g = acceleration due to gravity = 32.2 ft/sec2 (9.81 m/s2) 
 
• f = Moody friction factor (a dimensionless empirical factor that is a 

function of Reynolds Number and ε/D, where: 
 
• ε = an empirical pipe roughness, ft (m or mm for S.I. units) 

 



NOTE:  Although the Darcy Weisbach equation is an empirical equation, it 
is also a dimensionally consistent equation.  That is, there are no 
dimensional constants in the equation, so any consistent set of units that 
gives the same dimensions on both sides of the equation can be used.  A 
typical set of U.S. units and a typical set of S.I. units are shown in the list 
above. 
 
 
Table 1, below, shows some typical values of pipe roughness for common 
pipe materials, drawn from information on several websites. 
 

 
       Table 1. Pipe Roughness Values  

 

                     
           
 
Frictional pressure drop for pipe flow is related to the frictional head loss 
through the equation:  ∆Pf = ρghL = γhL, where: 
 

• hL = frictional head loss (ft or m) as defined above 
 
• ρ = fluid density, slugs/ft3 (kg/m3 for S.I.) 
 
• g = acceleration due to gravity, ft/sec2 (m/s2 for S.I.) 

 



• γ = specific weight, lb/ft3 (N/m3 for S.I.) 
 
A value of the Moody friction factor, f, is needed for any calculations with 
the Darcy Weisbach equation other than empirical determination of the 
friction factor by measuring all of the other parameters in the equation.  The 
friction factor, f, also appears in some of the other natural gas pipeline flow 
equations that will be presented shortly.  One method of obtaining a value 
for f is graphically, from the Moody friction factor diagram, first presented 
by L. F. Moody in his classic 1944 paper in the Transactions of the ASME. 
(Ref. #1).   The Moody friction factor diagram, shown in the diagram below, 
is now available in many handbooks and textbooks and on many websites.  
 
 

 
 

            Source:  http://www.thefullwiki.org/Moody_diagram 
 
 
There are also equations that may be use to calculate the Moody friction 
factor, f, rather than using a graph like the Moody diagram.  There are, in 
fact, equations available that give the relationships between Moody friction 
factor and Re & ε/D for four different portions of the Moody diagram.  The 
four portions of the Moody diagram are: 

http://www.thefullwiki.org/Moody_diagram


 
i) laminar flow (Re < 2100 – the straight line at the left side of the 

Moody diagram); 
 
ii) smooth pipe turbulent flow -  the dark curve labeled “smooth pipe” 

in the Moody diagram, in which the pipe roughness ratio, ε/D, is 
below the threshold value for a given value of Re.  The friction 
factor, f, is a function of Re only in this region; 

 
iii) completely turbulent region  -  the portion of the diagram above and 

to the right of the dashed line labeled “complete turbulence.”   The 
friction factor, f, is a function of ε/D only in this region; 

 
iv) transition region -  the portion of the diagram between the “smooth 

pipe” solid line and the “complete turbulence” dashed line.  The 
friction factor, f, is a function of both Re and ε/D in this region. 

 
 
A set of equations for these four regions are shown in the box below: 

 

 
 

 
 
 
 
 



Example #7:   Calculate the value of the Moody friction factor for pipe flow 
with Re = 107 and ε/D = 0.005. 
 
 
Solution:  From the Moody diagram above, it is clear that the point, Re = 
107 and ε/D = 0.005,  is in the “complete turbulence” region of the diagram.  
Thus: 
 
f =  [1.14 + 2 log10(D/ε)]-2  =  [1.14 + 2 log10(1/0.005)]-2  =  0.0303 = f 
 
 
If the flow conditions are in the transition region of the Moody diagram, 
then the last equation shown above for f, often referred to as the Colebrook 
equation or the Colebrook-White equation (shown below), must be used.  
This equation cannot be solved explicitly for f, so an iterative solution is 
required as illustrated with the next example. 
 
                     f = {-2*log10[((ε/D)/3.7) + (2.51/(Re*(f1/2))]}-2     (10) 
 
 
 
Example #8:  Calculate the value of the Moody friction factor for pipe flow 
with Re = 106 and ε/D = 0.0005. 
 
Solution:  The equation for the completely turbulent region, which is a 
function of ε/D only, will be used to obtain an initial estimate of f.  Then an 
iterative calculation will be used to obtain a final value. 
 
Initial estimate of f  =  [1.14 + 2 log10(1/0.0005)]-2  =  0.01668 
 
Substituting f = 0.01668 into the Colebrook equation gives: 
 
f = {-2*log10[((.0005)/3.7) + (2.51/(106*(0.016681/2))]}-2  =  0.01721 
 
Repeating with the new value of f gives: 
 
f = {-2*log10[((.0005)/3.7) + (2.51/(106*(0.017211/2))]}-2  =  0.01721 
 



Since the newly calculated value of f is the same as the previous estimate, 
this is the value of the friction factor: 
 
 f  =  0.01721 
 
 
Typical applications of the Darcy Weisbach equation include 1) calculation 
of frictional pressure drop or frictional head loss for specified pipe diameter, 
length, & material (roughness), and flow rate;  2) calculation of fluid flow 
rate for specified frictional pressure drop or frictional head loss along with 
pipe diameter, length & roughness;  3) calculation of required pipe diameter 
for specified frictional pressure drop or frictional head loss, fluid flow rate, 
and pipe length & roughness. 
 
The general approach for calculation of flow rate (problem type (2) above) is 
to calculate the quantity Re(f1/2) with the following equation, derived from 
the Darcy Weisbach equation: 
 
 Re(f1/2)  =  (ρD/µ)(2ghLD/L)1/2        (11) 
 
Then the friction factor can be calculated with the Colebrook equation 
(equation (10)), the gas velocity can be calculated from the Darcy Weisbach 
equation, and the gas flow rate can be calculated from Q = VA. 
 
Calculation of required pipe diameter (problem type (3) above) requires an 
iterative solution (in addition to the iterative determination of the friction 
factor). 
 
The first two types of calculations will be illustrated with the next three 
examples.   
 
 
Example #9:  Determine the frictional pressure drop for the natural gas flow 
described in Example #5, that is, natural gas with a specific gravity of 0.65 
flowing at 60 cfs through a 12” diameter pipe with a gas temperature of 80 
oF and average pressure of 500 psi, if the pipe material is commercial steel 
and it is 500 ft long. 
 
Solution:    From Example #5, the gas density, viscosity, and velocity, and 
the Reynolds number are as follow: 



 
ρg  =  0.05707 slugs/ft3,  µg  =  2.45 x 10-7 lb-sec/ft2,   
 
V = 76.4 ft/sec,  and  Re = 1.78 x 107. 

 
From Table 1, the surface roughness for commercial steel pipe is                   
ε = 0.00015 ft, so ε/D = 0.00015/1  =  0.00015. 
 
Substituting Re = 1.78 x 107  and  ε/D  =  0.00015  into the equation above 
for completely turbulent flow gives an initial estimate of  f = 0.01295.  
Using this value of f along with the values for Re and ε/D  in the Colebrook 
equation gives f = 0.013.  Repeating gives the same value for f, so the 
friction factor can be taken as f = 0.013. 
 
Now, substituting values into the Darcy Weisbach equation (equation (9)) 
gives: 
 
hL = f(L/D)(V2/2g)  =  (0.013)(500/1)*[76.42/(2*32.17)]  =  591 ft 
 
The frictional pressure drop can then be calculated as follows: 
 
∆Pf = ρghL = (0.05707)(32.17)(591) = 1086 psf  = 1086/144 psi  =  7.54 psi 
 
Since the pressure drop is less than 10% of the pipe pressure, the 
incompressible calculation with the Darcy Weisbach equation is appropriate. 
 
 
Example #10:  If the length of the pipeline in Example #8 was 20,000 ft 
instead of 500 ft, would the Darcy Weisbach equation still be useable to 
calculate the frictional pressure drop? 
 
Solution:  Following the same calculation procedure used for Example #8 
leads to a frictional pressure drop of 302 psi.  This is more than 40% of the 
average pipe pressure, so the Darcy Weisbach equation should not be used. 
 
 
Example #11:  Determine the flow rate of natural gas through a 12 inch 
diameter, 500 ft long pipeline of commercial steel, if the specific gravity of 



the gas is 0.65, its temperature is 80 oF, its average pressure is 500 psia, and 
the pressure drop across the 500 ft of pipe is 20 psi. 
 
Solution:  From Example #5, the gas density, viscosity, and velocity, and 
the Reynolds number are as follow: 
 

ρg  =  0.05707 slugs/ft3,  µg  =  2.45 x 10-7 lb-sec/ft2,   
 
From Table 1, the surface roughness for commercial steel pipe is                   
ε = 0.00015 ft, so ε/D = 0.00015/1  =  0.00015. 
 
The frictional head loss is:      

 
hL = ∆Pf /ρg  = (20*144)/(0.05707*32.17)  =  1569 ft 

 
Using equation (11): 
 
Re(f1/2)  = [0.05707*1/(2.45 x 10-7)](2*32.17*1569*1/500)1/2  =  3,308,799 
 
Using the Colebrook equation: 
 
f = {-2*log10[((0.00015/1)/3.7) + (2.51/(3308799))]}-2  =  0.0130   
 
Now, from the Darcy Weisbach equation, the gas velocity is: 
 
V = [2ghLD/(fL)]1/2  =  [2*32.17*1569/(0.0130*500)]1/2  =  124.6 ft/sec 
 
Finally, Q = VA = V(πD2/4)  =  124.6(π12/4)  =  97.9 cfs 
 
 
 
The flow rate of natural gas is often expressed as MMSCFD (millions of 
standard cubic feet per day).  The calculation in Example #11 gives actual 
cfs (ACFS).   The flow rate in ACFS can be converted to SCFS (standard 
cfs) with the following equation: 
 
 SCFS  =  ACFS(Pave/Pb)(Tb/Tave) 
 
 



Where:    SCFS is the flow rate in standard cubic feet per second. 
 
      ACFS is the flow rate in actual cubic feet per second. 
 
       Pave is the average absolute pressure of the gas. 
 
       Pb is the absolute base pressure (standard pressure) expressed in    
                          the same units as Pave.  (Pb is typically 14.7 psia.) 
 
        Tave is the average absolute temperature of the gas in oR. 
 
         Tb is the absolute base temperature (standard temperature) in oR. 
                          (Tb  is typically 60 oF  =  520 oR.) 
 
Multiplying SCFS by 3600*24 sec/day and dividing by 106, will convert it to 
MMSCFD (millions of standard cubic feet per day). 
 
 
Example #12:  Convert the natural gas flow rate calculated in Example #11 
(97.9 cfs) into units of MMCFD (millions of cubic feet per day) and into 
MMSCFD (millions of standard cubic feet per day). 
 
Solution:  The conversion can be made as follows: 
 
Q  =  (97.9 ft3/sec)(3600 sec/hr)(24 hr/day)/(106 ft3/MMCF)  
       
                          =  8.46 MMCFD 
 
This can be converted to MMSCFD by the following calculation: 
 
Q  =  8.46 MMCFD(500/14.7)[(60 + 460)/(80+460)]  =  277 MMSCFD 
 
 
 
 
 
 
 
 
 



8.      The Weymouth Equation 
 
The Weymouth equation was the first natural gas pipeline flow equation that 
was developed to make calculations without the requirement for"  an 
iterative calculation to obtain a value for the friction factor, f.  The 
Weymouth equation is most suitable for gas flows in pipelines with 
diameters of 15 inches or less, for segments of pipeline that are less than 20 
miles in length, and for medium to high pressure (approximately 100 psia to 
1000 psia).  The flow is typically considered to be isothermal when using the 
Weymouth equation. 
 
A commonly used form of the Weymouth equation in U.S. units, which 
takes elevation difference between pipeline entrance and exit into account, is 
as follows: 
 

         (12) 
Where: 

                  
 
The parameters in the equation and their units are as follows: 
 
Q is the natural gas flowrate in std ft3/day.   
           (Dividing this value by 106 gives MMSCFD.) 
 
Tb is the base temperature, aka temperature at standard conditions, in oR. 
       (The base temperature, Tb, is typically 60 oF  =  520 oR.) 
 
Pb is the base pressure, aka pressure at standard conditions, in psia. 
       (The base pressure, Pb, is typically 14.7 psia.) 
 
P1 is the pressure at the pipe entrance in psia. 
 



P2 is the pressure at the pipe exit in psia. 
 
L is the length of the pipeline in miles. 
 
Le is the effective length of the pipeline in miles, taking into account the 
elevation difference between pipeline entrance and exit.  (See the equation 
above for calculation of Le.) 
 
D is the internal diameter of the pipe in inches. 
 
G is the specific gravity of the natural gas relative to air. 
 
Tf is the average temperature of the gas flowing in the pipeline in oR. 
 
Z is the compressibility factor of the natural gas at the average temperature 
and pressure of the gas in the pipeline. 
 
∆H is the elevation of the pipeline exit minus the elevation of the pipeline 
entrance in ft. 
 
NOTE:  The equation for the effective length of the pipe, Le, will work for 
either a positive or negative value of ∆H, but it will not work if ∆H is set 
equal to zero because there will be division by zero in the equation.  If there 
is no elevation difference between the pipeline entrance and exit, just set ∆H 
equal to 1 ft.  If the elevation increases in the direction of flow, ∆H should 
have a positive value and if the elevation decreases in the direction of flow, 
∆H should have a negative value. 
 
 
E is the pipeline efficiency.  
 
The value of E may range from 0.85 to 1.  Following are some general 
guidelines for the value of the pipeline efficiency, E: 
 
1. E = 0.92 for average operating conditions. 
 
2.  E = 1 for new pipe with no bends, fittings or diameter changes. 
 



3.  E = 0.95 for very good operating conditions, typically through the first 
12-28 months of operation. 
 
4.  E = 0.85 for unfavorable operating conditions. 
 
 
Example calculations with the Weymouth Equation are included in Section 
11 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
9.      The Panhandle A Equation 
 
The Panhandle A equation was developed in the 1940s as a variation of the 
General Flow Equation.  The Panhandle A equation is most suitable for gas 
flows in long pipelines with diameters of 12 to 60 inches and pressures 
between 800 psia and 1500 psia.  The flow is typically considered to be 
isothermal when using the Panhandle A equation. 
 
A commonly used form of the Panhandle A equation in U.S. units, which 
takes elevation difference between pipeline entrance and exit into account, is 
as follows: 
 

   (13) 
 
 
Where: 

                          
 
The parameters in this equation are all the same as those just listed above for 
the Weymouth Equation. 
 
Example calculations with the Panhandle A Equation are included in Section 
11 below. 
 
 
 
 
 
 



 
 
10.      The Panhandle B Equation 
 
The Panhandle B equation was developed in the 1940s as a variation of the 
General Flow Equation.  The Panhandle B equation is most suitable for gas 
flows in long pipelines with diameters of 36 inches or larger and pressures 
above 1000 psia.  The flow is typically considered to be isothermal when 
using the Panhandle B equation. 
 
A commonly used form of the Panhandle B equation in U.S. units, which 
takes elevation difference between pipeline entrance and exit into account, is 
as follows: 
 
 

          (14) 
 
Where: 

                               
 
 
The parameters in this equation are all the same as those listed above for the 
Weymouth Equation. 
 
Example calculations with the Panhandle B Equation are included in Section 
11 below. 
 
 
 
 
 



 
 
11.      Example Calculations 
 
This section consists of an example with calculations using the Weymouth 
Equation, the Panhandle A Equation, and the Panhandle B Equation. 
 
Example #13:  Use the Weymouth Equation, the Panhandle A Equation, and 
the Panhandle B Equation to calculate the natural gas flow rate for the gas 
and pipeline information in Example #11.  Assume no elevation difference 
between pipeline entrance and exit, and assume a pipeline efficiency of 0.92. 
Compare with the result calculated using the Darcy Weisbach Equation in 
Example #11. 
 
Solution:  Here is the information from Example #11:  "Determine the flow 
rate of natural gas through a 12 inch diameter, 500 ft long pipeline of 
commercial steel, if the specific gravity of the gas is 0.65, its temperature is 
80 oF, its average pressure is 500 psia, and the pressure drop across the 500 
ft of pipe is 20 psi."   
 
The base temperature and pressure will be taken as Tb  =  60 oF  =  540 oR 
and Pb  =  1.47 psia.  Other given parameters needed for the calculations are: 
pipe diameter, D = 12 in;  pipe length, L = 500/5280 mi  =  0.94697 mi;  gas 
specific gravity, G = 0.65;  flowing temperature, Tf = 80 oF;  pipeline 
efficiency, E = 0.92.  For no elevation change between pipeline entrance and 
exit, set ∆H = 1 ft. 
 
Intermediate calculations are as follow: 
 
From Equation (6):  Z = 0.9218 
 
From the equations below the Weymouth, Panhandle A, and Panhandle B 
Equations:   s = 0.00005  and  Le  =  0.0947 mi. 
 
The inlet and exit pressures are calculated from the average pressure and the 
pressure drop as follows: 
 
P1  =  Pave  +  (∆P/2)  =  500 + 20/2  =  510 psia 
 



P2  =  Pave  -  (∆P/2)  =  500 - 20/2  =  490 psia 
 
 
Substituting these values into Equation (11) (the Weymouth Equation) gives: 
 
 Q  =  2.72  x 108 SCFD  =  272 MMSCFD   (Weymouth Equation) 
 
 
Substituting the same input values into Equation (12) (the Panhandle A 
Equation) gives: 
 
  Q  =  4.01  x 108 SCFD  =  401 MMSCFD   (Panhandle A Equation)   
 
 
Substituting the same input values into Equation (13) (the Panhandle B 
Equation) gives: 
 
  Q  =  3.74  x 108 SCFD  =  374 MMSCFD   (Panhandle B Equation)   
 

 
From Example #12, the results using the Darcy Weisbach Equation were: 
 
 Q  =  277 MMSCFD 
 
Discussion:  Note that the pipe diameter and length and the pipeline 
pressure are all within the recommended ranges for use of the Weymouth 
Equation.  Also, the pressure drop is less than 10 % of the average pipeline 
pressure, so use of the Darcy Weisbach Equation is appropriate.  The gas 
flow rates calculated with these two equations are in rather close agreement.  
On the other hand, the pipe diameter and length and the pipe line pressure 
are not within the recommended ranges for use of either the Panhandle A 
Equation or the Panhandle B Equation and both of those equations yielded 
gas flow rates quite a bit higher than those calculated with the Weymouth 
and Darcy Weisbach Equations. 
 
 
 
 



 
 
 
12.      Summary 
 
The Weymouth Equation, the Panhandle A Equation, the Panhandle B 
Equation, and the Darcy Weisbach Equation are all possible equations to be 
used for natural gas pipeline flow calculations.  These four equations were 
presented, discussed, and illustrated with numerous worked examples in this 
course material.  Several natural gas properties used in the calculations were 
also identified and discussed, along with presentation of methods for 
calculating values for some of the properties. 
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