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Abstract 

This report documents a high-level analysis of the benefit and cost for flywheel energy 
storage used to provide area regulation for the electricity supply and transmission system in 
California. Area regulation is an ‘ancillary service’ needed for a reliable and stable regional 
electricity grid. The analysis was based on results from a demonstration, in California, of 
flywheel energy storage developed by Beacon Power Corporation (the system’s 
manufacturer). Demonstrated was flywheel storage systems’ ability to provide ‘rapid-
response’ regulation. (Flywheel storage output can be varied much more rapidly than the 
output from conventional regulation sources, making flywheels more attractive than 
conventional regulation resources.) 

The work was sponsored by the Department of Energy and Sandia National Laboratories 
Energy Storage Systems Program. The demonstration was supported by the California Energy 
Commission’s Public Interest Energy Research program. It was located at the Distributed 
Utility Integration Testing facility managed by Distributed Utility Associates and located at 
the Pacific Gas and Electric Technological and Ecological Services research facility in San 
Ramon, California. The intended audience for this report includes electricity storage vendors, 
technology developers, system integrators and advocates, energy policymakers and 
researchers. 
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Glossary 

Ancillary Services* – Services other than scheduled energy which are required to maintain 
system reliability and meet Western Systems Coordinating Council (WSCC)/ North 
American Electric Reliability Council (NERC) operating criteria. Such services include 
spinning, non-spinning, and replacement reserves; regulation (automatic generation control 
or AGC); voltage control; and black-start capability. 

Area Control Error (ACE)* – The sum of the instantaneous difference between the actual 
net Interchange and the scheduled net interchange between the California Independent 
System Operator (CAISO) control area and all adjacent areas, taking into account the effects 
of control areas and the CAISO control area’s frequency bias, correction of feter error and 
time error correction obligations. 

Automatic Generation Control (AGC)* – Generation equipment that automatically 
responds to signals from the CAISO’s energy management system (EMS) in real time to 
control the power output of generating units within a prescribed area in response to a change 
in system frequency, tie-line loading, or the relation of these to each other, so as to maintain 
the target system frequency and/or the established interchange with other areas within the 
predetermined limits. 

Area Regulation – See Regulation Service. 

Carrying Cost – The cost to own capital equipment including return on principal (equity 
and/or interest), return of principal, depreciation, taxes, and insurance. Carrying cost does not 
include consumables or variable and fixed operations costs. 

Demand – The rate of electric energy delivery, normally in kilowatts (kW) or megawatts 
(MW) for utilities (not adjusted for power factor). 

Distribution – See Electricity Distribution 

Down Regulation – Decreased use of generation equipped with governors and AGC to 
maintain minute-to-minute generation/load balance within the control area to meet NERC 
control-performance standards. 

Electricity Distribution –Part of the electricity grid that delivers electricity to end users. It is 
connected to the transmission system which, in turn, is connected to the electric supply 
system (generators). Relative to electricity transmission the distribution system is used to 
send relatively small amounts of electricity over relatively short distances. In the U.S., 
distribution system operating voltages generally range from several hundred volts to 50 kV 
(50,000 V). Typical power transfer capacities range from a few tens of MW for substation 
transformers to tens of kW for small circuits. 

Electricity Subtransmission – As the name implies, subtransmission transfers smaller 
amounts of electricity, at lower operating voltages than transmission. For the purposes of this 
study, transmission and distribution (T&D) is assumed to include subtransmission and not 
high-capacity/high-voltage transmission systems. 
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Electricity Transmission – Electricity transmission is the backbone of the electricity grid. 
Transmission wires, transformers, and control systems transfer electricity from supply 
sources (generation or electricity storage) to utility distribution systems. Relative to 
electricity distribution systems, the transmission system is used to send large amounts of 
electricity over relatively long distances. In the U.S., transmission system operating voltages 
generally range from 200 kV (200,000 V) to 500 kV. Transmission systems typically transfer 
the equivalent of 200 to 500 MW. Most transmission systems use alternating current, though 
some larger, longer transmission corridors employ high-voltage direct current. 

Equipment Rating – The amount of power that can be delivered under specified conditions. 
The most basic rating is the ‘nameplate’ rating: nominal power delivery rate under ‘design’ 
conditions. Other ratings may be used as well. For example, T&D equipment often has an 
‘emergency’ rating (i.e., the sustainable power delivery rate under emergency conditions 
such as when load exceeds nameplate rating by several percentage points). Operation at 
emergency rating is assumed to occur infrequently, if ever. 

Peak Demand – The maximum power draw on a power delivery system, usually year 
specific. 

Regulation Service – Increased or decreased use of generation equipped with governors and 
AGC to maintain minute-to-minute generation/load balance within the control area to meet 
NERC control-performance standards. The CAISO defines regulation in terms of generation: 
the portion of a generating unit’s unloaded capability that can be loaded, or loaded capability 
that can be unloaded, in response to AGC signals from the independent system operator’s 
(ISO’s) EMS control computer. Regulation is used to provide control-area balancing, 
frequency bias, and time-error correction. 

Subtransmission – See Electricity Subtransmission. 

Up Regulation – Increased use of generation equipped with governors and automatic 
generation control to maintain minute-to-minute generation/load balance within the control 
area to meet NERC control-performance standards. 

Value Proposition – A value proposition comprises all benefits and all costs, including risk, 
that are associated with an investment or purchase. 

 

* Definitions supplied by the CAISO. 
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Executive Summary 

Purpose and Scope 
This report describes a high-level evaluation of the financial viability of using flywheel 
electricity storage as a grid regulation resource. The evaluation was based on results from a 
flywheel storage system demonstration. That demonstration was undertaken to demonstrate 
1) flywheel energy storage’s overall performance as a regulation resource and 2) the 
presumed advantage that flywheels have over generation for regulation – the ability to vary 
power output very rapidly and reliably. 

Key Results and Conclusions 
The performance of the flywheel storage system demonstrated was generally consistent with 
requirements for a possible new class of regulation resources – ‘rapid-response’ energy-
storage-based regulation – in California. In short, it was demonstrated that Beacon Power 
Corporation’s flywheel system follows a rapidly changing control signal (the ACE, which 
changes every four seconds). 

Based on the results and on expected plant cost and performance, the Beacon Power flywheel 
storage system has a good chance of being a financially viable regulation resource. Results 
indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative 
assumptions. (A benefit/cost ratio of one indicates that, based on the financial assumptions 
used, the investment’s financial returns just meet the investors’ target.) 
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Introduction 

This report documents results from a demonstration of flywheel electric energy storage 
(flywheels) for area regulation, an ancillary service required for electric grid operation. The 
work was sponsored by the California Energy Commission’s (CEC’s) Public Interest Energy 
Research (PIER) program and the U.S. Department of Energy’s Energy Storage Systems 
Program. The flywheel is made by Beacon Power Corporation (Beacon Power). 

In addition to demonstrating flywheels’ overall performance as a regulation resource, one 
key objective of the project was to demonstrate the presumed advantage that flywheels have 
over generation for regulation – the ability to vary power output rapidly and reliably. 

Flywheel Energy Storage 
Flywheel systems include a cylinder with a shaft that can spin rapidly within a robust 
enclosure. A magnet levitates the cylinder so there are limited friction-related losses and 
wear. The shaft is connected to a motor/generator and stator. Kinetic energy is converted to 
electric power via an external power conditioning system (PCS). 

The flywheel system demonstrated was a 100-kW pilot version of Beacon Power’s 20-MW 
Smart Energy Matrix™. The pilot system comprises seven individual flywheels, a PCS, and 
communication and control subsystems. It can discharge at full output for 15 minutes. The 
response time is described by Beacon Power to be “less than 4 seconds (at full power).” The 
demonstration was located at Distributed Utility Associates’ (DUA’s) Distributed Utility 
Integration Test (DUIT) testbed, at Pacific Gas and Electric’s (PG&E’s) Technical and 
Ecological Services facility in San Ramon, California. 

Project Background 
The Beacon Power high-speed flywheel electricity storage system is nearing 
commercialization. One apparently superior application of the technology is for electric 
power system regulation (also known as area regulation, or simply regulation). 

Regulation involves balancing the minute-to-minute fluctuations of demand for electricity 
and electricity supply capacity. Most regulation is provided by conventional thermal electric 
generation plants. Those plants provide ‘up’ regulation by increasing output when electricity 
demand exceeds supply and ‘down’ regulation by reducing output when electricity supply 
exceeds demand.  

Storage provides up regulation by discharging energy into the grid, and storage provides 
down regulation by absorbing energy from the grid. Notably, the rate of power from (or into) 
flywheel storage can change quite rapidly whereas output from conventional regulation 
sources – primarily thermal generation plants – changes slowly. Generation plants’ output 
(up or down) changes by percentage points per minute whereas flywheels’ output can change 
from full output (discharge) to full input (charging) – and vice versa – within a few seconds. 

Project Purpose 
The demonstration had one overarching goal—demonstrate the flywheel’s ability to follow a 
rapidly changing control signal such that the value of regulation from the flywheel is worth 
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significantly more than regulation provided by generation plants. This report documents an 
evaluation of the demonstration plant’s performance as a high-value regulation resource and 
the possible financial costs and benefits from a commercial flywheel storage plant used as a 
regulation resource. The evaluation was performed in parallel to a similar analysis 
undertaken by Beacon Power. Consequently, it provides the basis for a second opinion 
regarding the financial viability of flywheels for high-value regulation. 
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Flywheels for Area Regulation: The Value Proposition 

A value proposition comprises all benefits and all costs that are associated with an 
investment or purchase. The value proposition evaluated for this report is use of flywheel 
energy storage to provide area regulation. 

A key premise underlying the value proposition investigated for this research is that the 
rapid-response characteristic of electricity storage makes it especially valuable as a 
regulation resource. In fact, flywheel storage advocates and some experts contend that the 
benefit associated with regulation from flywheels is on the order of two times that of 
regulation provided by generation. 

Additionally, if storage is a more effective regulation resource than generation, the amount of 
generation freed up to serve electric demand may exceed the amount of storage capacity 
(MW) deployed. Furthermore, though not the subject of this work, if electricity storage is 
used for regulation in lieu of generation, there may be less wear and tear on generation 
equipment; reduced fuel use per kWh generated; and reduced emissions due to reduced plant 
ramping and reduced part-load operation. 

Regulation Service 
Regulation is a type of ancillary service1 involving management of “interchange flows with 
other control areas to match closely the scheduled interchange flows” and 
moment-to-moment variations in demand within the control area. The primary reasons for 
including regulation in the power system are to maintain the grid frequency and to comply 
with the NERC Control Performance Standards (CPS) 1 and 2 (NERC 1999a). Regulation 
also assists in recovery from disturbances, as measured by compliance with NERC’s 
Disturbance Control Standard (DCS).[1] 

Regulation is typically provided by “generating units that are online and producing energy, 
equipped with AGC equipment, and that can change output quickly (MW/minute) over an 
agreed upon range of power output (MW).” Generation facilities used for up regulation and 
those used for down regulation are operated at levels below maximum output and above 
minimum output, respectively.[2] 

When there is a momentary shortfall of electric supply capacity, generation facilities’ output 
to the grid is increased to provide up regulation. Conversely, plant output is reduced to 
provide down regulation when there is a momentary excess of electric supply. Typically, 
thermal power plants are most efficient when operated at a specific and constant (power) 
output level. Similarly, air emissions and plant wear and tear are usually lowest when thermal 
generation operates at constant output. 

                                                 
1 Ancillary Services are electric resources – other than the conventional power generation – that are used to 
maintain reliable and effective operation of the electric supply and transmission systems. Most often ancillary 
services are provided by utilities, though an increasing portion are provided by third parties. Six key ancillary 
services are 1) scheduling, system control, and dispatch; 2) reactive supply and voltage control from generation 
sources; 3) regulation and frequency response; 4) energy imbalance; 5) spinning reserve; and 6) supplemental 
reserve. 
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Storage provides up regulation by discharging (injecting energy into the grid), and it provides 
down regulation by charging (energy is taken from the grid to be stored). Unlike thermal 
power plants, flywheels’ performance is not affected much as output varies. And, while 
thermal power plants can require minutes or even hours to change power output significantly, 
flywheels can change power output level quite quickly – going from full output to no output 
in seconds. In fact, flywheels can transition from discharging at full (rated) power to charging 
in seconds. 

Benefits 
At minimum, regulation from flywheels is at least as valuable as regulation provided by 
slower generation capacity. Regulation from flywheels, however, may be even more 
valuable. First, flywheel storage can provide both up regulation and down regulation during 
the same time period (though not simultaneously). Second, because of the rapid-response 
feature – ability to change power input and output rapidly – flywheels may provide 
regulation that is more effective than regulation provided by slower, generation-based 
resources. Because of this advantage, regulation from flywheels is assumed to provide twice 
the benefit to the grid as regulation from generation.[3][4][5] 

Revenue for providing up and down regulation services for an entire year (8,760 hours) is 
estimated based on CAISO published hourly prices for both services for the year 2006 (see 
details in the Results and Conclusions section). The hourly prices are multiplied by two, to 
reflect the higher benefit from flywheels relative to generation-based regulation, before 
annual revenues are estimated. 

In addition to the price for regulation in specific hours of the year, another important criterion 
affecting the flywheel-for-regulation value proposition is flywheel plant availability. This is 
because the amount of time that the flywheel is available to provide regulation affects total 
profit that can be realized during the year. Notably, because of the modularity of flywheel 
storage (the Beacon Power design is quite modular) equipment diversity should result in high 
reliability. Specifically, a 20-MW, commercial-scale plant is expected to comprise a few 
hundred flywheel units. 

Though not included in the financial analysis, additional benefits derived from the use of 
flywheels for regulation may include the following: reduced need for generation capacity, 
reduced fuel for generation, reduced air emissions from generation, and reduced generation 
equipment wear and tear. As an indication of the prospects for reducing air emissions, 
consider results from a study performed by KEMA, Inc (kema.com), shown in Table 1. 
Based on results from that study, flywheels used for regulation in California could reduce 
carbon dioxide (CO2) emissions by 26% when compared to pumped hydroelectric storage 
used for regulation, 53% if the flywheels replace baseload gas-fired generation, and 59% if a 
natural-gas-fired peaking generator is displaced. Similarly nitrogen oxide (NOx) emissions 
may also be reduced by 20% to nearly 50%.[6] 
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Table 1. Potential Air Emissions Reduction  

 

Cost 
The primary cost element for flywheel storage is the cost to own the plant itself (carrying 
cost) including the cost for financing and taxes. Other important, though much less 
significant, elements of total cost are expenses, primarily repairs and equipment replacement 
required during the service life of the equipment and the cost for ‘make-up’ energy needed to 
offset losses associated with charging and discharging storage. Details about cost and 
performance for the Beacon Power flywheel are provided in the next section. 
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Evaluation Assumptions and Approach 

Assumptions 
This section describes the approach and assumptions used for financial analysis. Readers 
should note that two key assumptions – storage system service life and the discount rate used 
to calculate present worth over the service life – are intended to represent a generic 
circumstance. For any specific circumstance, situation-specific assumptions may be 
appropriate. (Figure 1 provides a general indication of the effect that service life and discount 
rate have on lifecycle financials.) 

Benefits and costs associated with flywheel energy storage systems used for regulation are 
calculated using the financial bases shown in Table 2. Specifically, the present worth of 
expense and benefit streams are calculated using the following standard values: 1) 10- year 
storage system service life, 2) 10% discount rate, and 3) 2.5% annual price escalation 
(inflation) rate. The annual carrying cost for the (capital) plant and equipment is calculated 
using a fixed charge rate of 0.13 for utility-owned equipment and 0.20 for private/non-utility 
ownership. (Fixed charge rates are used to estimate ‘levelized’ or annuity-like payments that 
reflect the owner’s cost of capital, taxes, and insurance associated with owning the capital 
plant and equipment.) Given that flywheels for the value proposition considered are assumed 
to be owned by a non-utility entity, the fixed charge rate used is 0.20.[7] 

Table 2. Financial Assumptions for Lifecycle Benefit/Cost Analysis [8] 

Parameter Value 

Service Life 10 years 

Discount Rate 10.0% 

General Inflation Rate 2.5% 

Utility Fixed Charge Rate 0.13 

Non-utility Fixed Charge Rate 0.20 

Methodology 
The first three criteria described above – service life, discount rate, and inflation – are used to 
calculate the present worth (PW) factor. As shown in Figure 1, PW factors provide a 
simplified way to represent a discounted present worth of a stream of regular revenues or 
payments, for a range of time periods (1 to 20 are plotted), for various discount rates (three 
are plotted). 
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Figure 1. PW factors for three discount rates and various service lives. 

Consider an example: It will cost $100,000 in the first year of operation for a storage plant. 
That annual cost is assumed to escalate at 2.5% per year over the 10-year service life. The 
owner uses a 10% discount rate. The present worth of all costs (before tax) is about $717,000 
(7.17 PW factor × $100,000 in Year 1). For comparison, consider present worth values for 
the other discount rates shown in Figure 1. For a first year cost of $100,000, the present 
worth (over 10 years) is about $813,000 if the discount rate is 7% per year and the 10-year 
present worth is about $630,000 if the discount rate is 13% per year. The 7.17 PW factor is 
the one used for revenues and for expenses for this report. 

For the capital plant, the installed cost for the capital equipment is multiplied by the fixed 
charge rate to calculate the levelized capital carrying cost for the plant in the first year. That 
same annual charge is assumed to apply for the life of the plant (10 years for this analysis). 
Finally, the 10 years of annual carrying cost values ($Current) are discounted using the 10% 
discount rate. Using the PW factor method described above and assuming no inflation2, the 
PW factor used is 6.44. 

Readers should note that the standard plant life used is 10 years. However, Beacon Power 
expects the flywheels to last 20 years. To compensate, the PW of revenues and expenses not 
related to carrying cost is increased by about 50%, to account for operation in the second 
10 years of the plant’s life. As shown in Figure 1, that increment is estimated based on a PW 
factor of 10.7 for 20 years, not the 7.17 PW factor for 10 years used throughout the rest of 
this report. 

                                                 
2 By definition, levelized payments do not change throughout the life of the plant, like mortgage payments. 
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Flywheel Energy Storage Cost and Performance 
The values shown in Table 3 are flywheel storage system cost and performance assumptions 
plus the price for make-up energy. The cost and performance values for flywheels reflect 
expected values for a 20-MW, commercial-scale plant. Installed cost reflects a 20% 
uncertainty adder. This value is used to account for the normal uncertainty associated with 
technology scale up and commercial project development (e.g., siting, contracts, construction 
delays, etc.). 

Table 3. Flywheel Storage Cost and Performance Assumptions 

Criterion Value 

Commercial Plant Scale 20 MW 

Plant Installed Cost $1,566/kw 

Plant Availability 95% 

Round-trip Efficiency 81% 

Variable Operation Cost $3.14/MWhout 

Fixed Operation Cost (Year 1) $11.60/kW 

Make-up Energy Price $40/MWh 

Price for Conventional Regulation Service 
The key data used for estimating the regulation benefit is the hourly price for up- and down-
regulation services (each priced separately). That price is denominated in $/MW per hour of 
service. Hourly prices for up and down regulation in California in 2006 are shown in Figure 
2 and Figure 3, respectively. Annual average prices used for the valuation are $21.48/MW 
(up) and $15.33/MW (down) per service hour, for a total of $36.70/MW per service hour. 
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Figure 2. 2006 up-regulation prices in California. 
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Figure 3. 2006 down-regulation prices in California. 

Value of Regulation from Flywheels 
As described elsewhere in this report, it is assumed that flywheels used for regulation provide 
twice as much benefit to the grid as generation-based regulation. Specifically, it is assumed 
that regulation resources are twice as valuable if they follow the ACE signal closely. That 
signal changes every several seconds to reflect the momentary difference between the 
amount of power that is online and the amount needed to keep supply and demand balanced 
and to maintain the electrical stability of the grid (especially the 60-Hz frequency). Based on 
this assumption, flywheel storage used as a regulation resource is treated as if it is eligible for 
payments that are twice as much as prices shown above for conventional generation-based 
regulation. 

Market Potential 
In addition to financials, the CEC/PIER is interested in the market potential (in MW) for the 
flywheels-for-regulation value proposition. Unfortunately, the authors of this report do not 
have the resources needed to establish that value rigorously or credibly. Nonetheless, the 
authors speculate that a conservative estimate of the market potential in California could be 
on the order of 50 to 60 MW of the total regulation market managed by the CAISO over the 
next ten years. (The CAISO does not manage all of the regulation resources within the state. 
Some of that capacity could be in play as well.) This speculation has two primary bases. The 
first is a cursory review of regulation capacity requirements available at the CAISO Open 
Access Same-Time Information System (OASIS) website (http://oasis.caiso.com/) under the 
ancillary (services) tab and on discussions with representatives from Beacon Power. The 
second is a discussion with representatives from Beacon Power.[9] 
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Methodology Observations and Caveats 
• The make-up energy price assumed was not developed rigorously. Although this 

value is probably adequate for the purposes of this report, it should be developed 
more rigorously when evaluating the financials for an actual project. 

• Based on results from the demonstration project, flywheel systems with 15 minutes of 
storage can store enough energy to provide regulation during 97.5% of the time that 
the storage is used. For the purposes of this evaluation, the financial implications of 
that criterion are assumed to be modest and are ignored. 

• The project was a demonstration of the flywheel’s ability to respond to rapidly 
changing control signals without regard to the magnitude of the response (in MW) 
that might be needed. Consequently, the results herein reflect the value for regulation 
capacity on the margin. 

• The market potential estimate used for this evaluation (though adequate for a high-
level estimate of the magnitude of the statewide economic impact) is imprecise. 
Unfortunately, little is known about the effect of significant penetration of rapid-
response regulation capacity on the need for regulation or the price for regulation. 

• The premise about how much more valuable flywheels are than generation-based 
regulation resources (as meritorious as it may be) may not be reflected in regulation 
pricing without a significant amount of confirmation, regulatory accommodation, and 
time. 

• The 0.20 annualization factor used to estimate annual carrying cost for the plant, 
though perhaps imprecise, does provide a reasonable general indication of the cost to 
finance plant and equipment using non-utility equity. 

• Another important assumption affecting results is the 20% uncertainly adder that 
increases the assumed installed cost for a commercial plant (provided by Beacon 
Power). That value is used to account for the myriad unforeseen challenges that are 
likely to beset any technology development enterprise and project development effort. 

• Finally, the design service life for a commercial Beacon Power flywheel plant is 
20 years. For at least two reasons, the assumed service life for the evaluation 
described in this report is 10 years. Perhaps most importantly, guidelines established 
by CEC/PIER for evaluating the merits of various storage demonstrations require 
using generic standard assumptions as bases for comparing financials for all 
demonstration projects sponsored. Those generic assumptions include 10-year life, 
10% discount rate, and 2.5% price escalation rate. Second, though the authors do not 
mean to refute the 20-year expected life assumed by Beacon Power, a more 
conservative 10-year life expectancy was used for this report because both the 
technology and the value proposition are so new. 
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Results and Conclusions 

Perhaps the most important result from the project is that the sponsors and vendors 
successfully demonstrated the ability of the Beacon flywheel to follow control signals that 
change very rapidly—much more rapidly than the signal used to control the output of 
generation-based regulation. Although they are not addressed in this report, readers should be 
aware of similar results from work in New York State involving Beacon’s flywheel energy 
storage. [10] [11] 

Results 
Demonstration plant availability for three plant output levels (relative to full rating) is 
summarized in Table 4. Also shown is the availability assumed for a commercial plant. As 
shown, the demonstration unit operated 51.4% of the time at full capacity (full capacity 
means that all seven flywheels were operating). Similarly, the demonstration unit operated 
nearly 53% of the time at 85.7% of rated capacity (85.7% capacity represents six flywheels 
of seven). There were at least five of seven flywheels (71.4% of full rated capacity) operating 
almost 88% of the time. Note that the demonstration plant’s availability would be somewhat 
higher when accounting for research-related outages which include downtime due to causes 
that would only affect operation of a research or pilot project (e.g., no control signal was 
available, access to the demonstration facility was restricted, or the system could not be 
connected to the grid). Downtime to due equipment failure is not considered research-related. 

Table 4. Demonstration Plant Actual Availability and 
Commercial Plant Expected Availability 

Capacity 
(% of Full) 

Availability 
(Actual) 

Without 
‘Research-related’ 

Outages 
Commercial Plant 

(Expected) 

100% 47.3% 51.4% 95.0% 

85.7% 52.7% 56.9%  

71.4% 87.8% 92.0%  

The financial implications of the availability results are summarized in Figure 4. Calculation 
details are provided the Appendix. The left axis shows $/kW in Year 1. Those units reflect a 
single-year amount, in the first year, for each kW of plant rating. The right axis indicates the 
corresponding lifecycle value over the plant’s (assumed) 10-year life. Results are shown for 
three levels of annual average power output: 71%, 86%, and 100% of plant rating. Note that 
71% represents 5 of 7 flywheels in the demonstration system, 86% represents 6 of 7 
flywheels, and 100% represents 7 of 7 flywheels. Results are presented, for those three plant 
output levels, for a range of plant annual availability levels. Also shown is the break-even 
amount, reflecting the carrying cost for a commercial plant. The uppermost plot indicates 
results for plants operating at full rating. The next two plots indicate financials for a plant 
operating at 86% and 71% of its rating, respectively. Thicker parts (to the lower left) of the 
three plots reflect results from the demonstration. Endpoints on all three plots indicate 
financials for a plant operating at the respective portion of rated output, if the plant operates 
as much as a commercial plant is expected to operate (95% of the year, full-load equivalent). 
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In the upper right portion of the figure, a box indicates financials that would be expected for 
a commercial plant, based on the assumptions discussed above. The benefit/cost ratio for 
such a plant ranges from $500/kW benefits ÷ $313/kW break-even = 1.6 to $554/kW benefits 
÷ $313/kW break-even = 1.77. Note that plant designers expect a 20-year service life for a 
20-MW, commercial-scale plant, though the assumed service life for this report is 10 years. 
To account for the difference, the present worth of additional benefits increases by about 
50%. 
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Figure 4. First year and lifecycle net revenue, with break-even indicator. 

Conclusions 
Based on the results and on expected plant cost and performance, the Beacon Power flywheel 
storage system has a good chance of being a financially viable regulation resource. Results 
indicate a benefit/cost ratio of 1.6 to 1.8 using somewhat conservative assumptions. 

The market potential (in MW) is less certain. Uncertainty about technical market potential is 
driven in part by a lack of knowledge regarding how the use of rapid-response regulation 
resources on the margin will affect overall demand and the price for regulation. Regarding 
market share, there is always uncertainty regarding competing options, including other 
vendors/developers and other technologies or approaches. 
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Needs and Opportunities for Research and Development 
One compelling question for this value proposition is “How much of this resource could be 
used and how much will be used?” Consistent with the hypothesis that rapid -esponse storage 
is twice as valuable as generation-based regulation capacity, another hypothesis to test is that 
only half as much regulation is needed if all regulation is rapid response. Additionally, if all 
regulation is rapid-response regulation, generation capacity is freed to provide power or 
other more valuable ancillary services and will probably produce less pollution and use less 
fuel per MWh delivered. 

Another way to broach the question is “What are key implications for the grid if all 
regulation is provided entirely by rapid-response regulation?” More specifically, what are 
the implications for 1) the amount of regulation needed, 2) the total cost to ratepayers for 
regulation, and 3) fuel use and air emissions from generation? 
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Appendix—Cost and Benefits Worksheets 

Plant Target Cost ($/kW) 1,305 Plant Installed Cost ($/kW) 1,566
Plant Cost Uncertainty Adder 20.0% with 20.0% uncertainty adder

Discount Rate 10.0%

Present Worth (Annualization) Factor 0.20 Plant Annual Capital Cost ($/kW, Year 1) 313

Plant PW Factor 6.44 Lifecycle Plant Capital Cost ($PW/kW, 10 Years) 2,017

Plant Availability 95.0% Plant Annual Operation Hours* 8,322
*50.0% for UP regulation

Variable Operartion Cost ($/MWhout) 3.14 Plant VOC ($/kW, Year 1)** 13.05
**For 4,161 "full load" hours of up regulation.

Roundtrip Efficiency 81%

Makeup Energy Price ($/MWhout) 40.00 Makup Energy Charges ($/kW Year 1)** 7.9
**For 4,161 "full load" hours of up regulation.

Fixed Operation Cost ($/kW, Year 1 ) 11.60 Fixed Operation Cost ($/kW, Year 1 ) 11.6

Price Escalation 2.5%

Expenses & Revenue PW Factor 7.17 Cost Summary
$/kW, Year 1

Capital Plant Cost 313.2 => Used as Breakeven
TOTAL Expenses 32.6 Fuel + VOC and FOC

Total Cost 345.8  
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Case: Beacon Flywheel Energy Storage
Regulation Type Up Down Total Benefit Scaler 2.00

Average Annual Price ($/MW per hour) 21.48 15.23 36.7 Plant Nominal Rating (kW) 100
Annual Total Revenue ($/MW, Year 1) 188,140 133,426 321,567 Roundtrip Efficiency 81.0%

($/kW, Year 1) 188 133 322
Makup Energy Charges ($/kW, Year 1)** 33.29

  $* per kW Makeup Energy Price: $40.0 / MWh

Capital Plant Installed Cost 156,600 1,566 Variable Operating Cost ($/kW, Year 1)** 13.74
Annual  Carrying Cost 31,320 313 VOC Unit Cost: $3.14 / MWh out

Lifecycle  Carrying Cost** 201,701 2,017 **For 4,380 "full load" hours of up regulation.
**6.44 Present Worth Factor

5,862 58.62 Fixed Operating Cost ($/kW, Year 1) 11.60
**For a 100 kW plant.    

Availability Annual Gross Revenue ($, Year 1) Annual Operating Cost ($ Year 1)

Plant 
Power 
(kW)

Demo., 
Actual 

Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

Demo., 
Actual 

Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

Demo., Actual 
Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

100 47.3% 47.3% 51.4% 95.0% 30,407 30,407 33,087 61,098 3,383 3,383 3,579 5,627
85.7 52.7% 52.7% 56.9% 95.0% 29,062 29,062 31,359 52,369 3,119 3,119 3,287 4,823
71.4 87.8% 87.8% 92.0% 95.0% 40,342 40,342 42,256 43,641 3,778 3,778 3,918 4,020

Annual Net* Revenue ($ Year 1) Lifecycle Net* Revenue ($PW) Lifecycle B/C**

Plant 
Power 
(kW)

Demo., 
Actual 

Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

Demo., 
Actual 

Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

Demo., Actual 
Availability

Demo. w/o 
Commu-
nication-
related 

Outages

Demo. w/o 
Research-

related 
Outages

Commercial 
Plant, Target 
Availability

100 27,024 27,024 29,508 55,470 193,762 193,762 211,571 397,722 0.96 0.96 1.05 1.97
85.7 25,943 25,943 28,072 47,546 186,011 186,011 201,276 340,905 0.92 0.92 1.00 1.69
71.4 36,564 36,564 38,338 39,622 262,162 262,162 274,882 284,087 1.30 1.30 1.36 1.41

*Net = revenue minus operations costs and makeup energy charges. **$PW Lifecycle Net Revenue / Plant Installed Cost.

Annual Expenses
Includes Fuel and Operations Costs
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