

Online Continuing Education for Professional Engineers Since 2009

Passive Solar Heating Basics

PDH Credits:

4 PDH

Course No.: PSH101

Publication Source:

Harlan Bengtson, PhD, PE

"Passive Solar Heating Basics"

Release Date: 2009

DISCLAIMER:

All course materials available on this website are not to be construed as a representation or warranty on the part of Online-PDH, or other persons and/or organizations named herein. All course literature is for reference purposes only, and should not be used as a substitute for competent, professional engineering council. Use or application of any information herein, should be done so at the discretion of a licensed professional engineer in that given field of expertise. Any person(s) making use of this information, herein, does so at their own risk and assumes any and all liabilities arising therefrom.

Passive Solar Heating Basics

Harlan H. Bengtson, PhD, P.E.

COURSE CONTENT

1. Introduction

The principles of passive solar heating, such as basic types of systems, their description, and the components making up any passive system are presented in this course. Sources of data for heating requirements and available solar radiation throughout the U.S are identified and discussed along with a method for estimating the rate of heat loss from a home. The use of these three inputs in a method for estimating performance of a passive heating system of specified size at a specified location is presented. The data retrieval and calculations are illustrated with numerous examples.

Passive Solar Interior

2. Learning Objectives

At the conclusion of this course, the student will

- Be able to name the six components which typically make up a passive solar heating system.
- Be able to name five basic types of passive solar heating systems.
- Be able to describe the differences between daytime and nighttime operation of direct gain passive solar heating systems.
- Be able to describe the differences between daytime and nighttime operation of indirect gain passive solar heating systems.
- Be able to obtain and interpret data for solar radiation rate on vertical and horizontal surfaces of buildings at any of the 239 locations in the NREL database
- Be able to obtain and interpret data for heating degree days at any of the 239 locations in the NREL database.
- Be able to estimate the rate of heat loss (Btu/°F-day/ft²) from a building if one year's monthly power bills for the building are available.
- Be able to estimate the monthly percentage of a buildings heating requirement provided by a given size passive solar heating system at a given location in the U.S., with specified rate of heat loss from the building (Btu/°F-day/ft²).
- Be able to estimate the quantity of thermal storage needed for a passive solar heating system with specified area of glazing.

3. Topics Covered in This Course

- I. Passive Solar Heating Definition
- II. Components of a Passive Solar Heating System
- III. Basic Passive Solar Heating System Types
 - A. Direct Gain
 - B. Thermal Storage Wall
 - C. Attached Sunspace
 - D. Thermal Storage Roof
 - E. Convective Loop
- IV. Inputs Needed to Estimate Size/Performance of a Passive Solar Heating System
 - A. Heating requirements (degree days) during the heating season at the site of interest
 - B. Information on the rate of heat loss from the house
 - C. Available solar radiation at the site of interest
- V. Size and Performance Calculations for a Passive Solar System
- VI. Choice of the Type(s) of Passive Solar Systems to Use
- VII. Sizing Solar Storage
- VIII. Controls Summer Shading of Passive Solar Glazing
- IX. Construction Details
- X. Related Links and References

4. Passive Solar Heating Definition

Passive solar heating of a building means using the sun's radiant energy to provide heat by converting the radiant energy to thermal energy (heat) when it is absorbed by the building. Some of the incoming thermal energy may be used to directly heat the building and some may be stored in components of the building. In a completely passive system, energy flow within the building is by natural means (conduction, natural convection and radiation) only. An active solar heating system, on the other hand, uses devices like blowers, pumps and/or fans to move heated fluid, from the collectors to the heated space, from thermal storage to the heated space, and from the collectors to thermal storage.

5. Components of a Passive Solar Heating System

A passive solar system is made up of components that have functions very similar to the components of an active solar heating system, but those components look much different and are arranged much differently. The typical components of either a passive or active solar heating system are: **aperture** (opening for solar radiation to go through, **absorber** (to absorb the radiant energy and convert it to thermal energy, **thermal mass** (for storage of excess thermal energy for later use), **distribution system**, **controls**, and a **backup heating system**.

In an passive solar heating system, the aperture and absorber are separated physically, while in an active system they are typically both part of the collectors. The **aperture**(s) in a passive solar heating system will be south-facing window(s). It is important that these windows not be shaded by other buildings or trees from 9:00 a.m. to 3:00 p.m. during the heating season.

In a passive system, the **absorber** and the **thermal mass** for storage are both part of the same unit(s), which are components of the building such as floors and walls in the direct path of sunlight. The floor and/or wall surfaces are typically dark

colored so that they will absorbs solar radiation well and convert it to thermal energy, which is stored in the mass of the floors and/or walls. In an active system, the absorber is typically part of the collector and the heat storage system is a separate unit.

A **distribution system** is used to circulate heat from the collection and storage points to different areas of the house. In a strictly passive system, heat will be circulated solely by one or more of the three natural heat flow methods, conduction, natural convection, and radiation. Fans, and/or blowers are sometimes used to help with the distribution of heat throughout the house in an otherwise passive system.

In a passive heating system, **Controls** include items such as operable vents or dampers, moveable window insulation, and/ or roof overhangs or awnings that shade the aperture during summer months. For active systems and nearly passive systems that use fans and/or blowers, controls typically include electronic sensing devices, such as a differential thermostat that signals a fan to turn on or off or a damper to open or close.

The **backup heating system** for either a passive or active system can be any type of non-solar heating system.

6. Basic Passive Solar Heating Systems Types

The five basic types of passive solar heating systems are: **direct gain, thermal storage wall, attached sunspace, thermal storage roof,** and **convective loop.**Each of the types contains the components described above. Three of these types, thermal storage wall, attached sunspace and thermal storage roof, are sometimes called indirect gain systems. The convective loop is sometimes called an isolated gain system. A brief description of each of the five types follows.

Direct Gain is a simple, straightforward approach to passive solar heating. In this type of system, sunlight enters the living space through south facing windows during the daytime. The incoming solar radiation strikes the walls, floor, and/or ceiling (thermal storage mass) of the living space directly or is reflected to them and is absorbed and converted to thermal energy in that thermal storage mass. The heated wall, floor, and/or ceiling will keep the living space warm. Also, during the daytime, when the storage surface temperature is high enough, heat will be conducted from the hot surface of the walls, floor, and/or ceiling to their interior, where it is stored. When the surface of the thermal storage mass are no longer being heated by the suns rays, the room and the wall, floor and/or surface temperatures will decrease and heat will be conducted from the heated interior of the thermal storage mass to the cooler surface and will heat the living space by convection and radiation. This is illustrated in Figure 1, below.

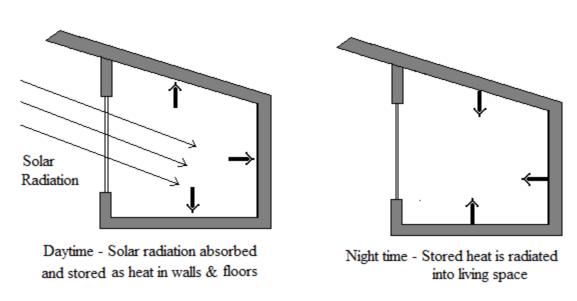


Figure 1. Direct Gain Passive Solar Heating

A direct gain passive solar heating system needs to have plenty of south facing glass and adequate thermal storage capacity in the living space. A guideline sometimes used for thermal storage capacity is to construct one-half to two-thirds of the total interior surface area of thermal storage materials. Materials typically used for thermal storage are masonry, such as concrete, adobe, brick, etc. Also

water walls can be used as well. A water wall consists of water in plastic or metal containers placed in the direct path of the sunlight. Water walls heat more quickly and more evenly than masonry, but they may not be as pleasing aesthetically. The surface temperature of dark colored masonry surfaces may become quite high if they receive direct sunlight. One way to avoid this, is to use a diffusing glazing material which scatters sunlight, thus distributing it more evenly over walls, ceiling, and floor. This approach distributes the incoming solar radiation more evenly but doesn't reduce the total amount of solar energy entering the space. The effect of using a diffusing glazing material is illustrated in Figure 2, below. Nighttime heat loss can be reduced by the use of moveable insulation, such as insulated drapes, to cover the south facing windows at night.

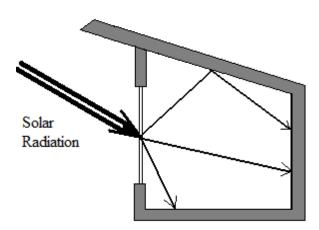


Figure 2. Direct Gain with Diffusing Glazing Material

A **Thermal Storage Wall** is shown in Figure 3 below. These walls are typically made of masonry or of water filled containers. This type of wall is sometimes called a Trombe Wall. It is named after the engineer, Felix Trombe, who popularized the design together with architect, Jacques Michel, in the 1960's. In 1881, this design was patented by Edward Morse. The key feature of the thermal storage (Trombe) wall system is the presence of thermal storage material between the interior living space and the sun. As a result of this wall placement, the dark colored storage wall will be heated by sunshine during day and the stored heat in the wall will provide heat to the living space at night. Vents are typically placed

near the top and the bottom of the wall, as shown in Figure 3. These vents should be opened during the day and closed at night, to provide natural convection* heating of the living space from the heated air between the storage wall and glazing during sunlight hours and to minimize heat loss from the heated space at night. As with the direct gain system, use of movable insulation for the glazing at night will reduce nighttime heat loss.

*NOTE: Natural convection (also called free convection) is the movement of a fluid because of the reduced density of a heated portion of the fluid. That is, as a portion of a fluid is heated, its density decreases and it rises. This will cause movement of other portions of a fluid mass as well. In the thermal storage wall, for example, the heated air between the glazing and the storage wall will rise and enter the living space through the upper vent. This will draw cool air from the bottom of the living area into the space between the glazing and storage wall through the lower vent.

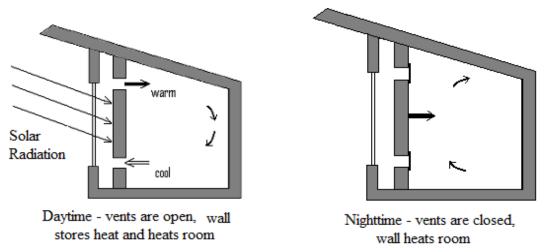


Figure 3. Thermal Storage (Trombe) Wall, daytime and nighttime configurations

Figure 4 shows an **Attached Sunspace** passive solar heating system. A useful feature of this type of system is that it can be added to an existing building. This makes it more suitable for retrofit than some of the other types of passive heating systems. This type of system uses direct gain in the sunspace, which is sometimes called a solar greenhouse, and may, in fact, be used as a greenhouse. Another

important part of the attached sunspace system is a thermal storage wall between the sunspace and the rest of the living space, as shown in Figure 4. Vents are typically included at the top and bottom of the thermal storage wall, as described above for a thermal storage (Trombe) wall.

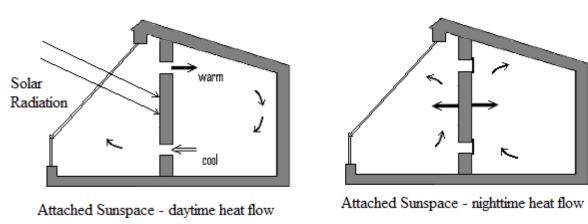


Figure 4. Attached Sunspace, Daytime & Nighttime Heat Flows

The **Thermal Storage Roof**, also called a solar roof, solar pond, or roof pond, uses water encased in plastic on the roof. Moveable insulation is used to cover the roof and reduce heat loss during the night, but the roof must be uncovered during the daytime to allow the sunshine to strike the pond. The pond (water encased in plastic) can also be placed in an attic, under glazing in a pitched roof. Figure 5 shows typical daytime and nighttime heat flows for a thermal storage roof system. On the minus side, however, a thermal storage roof requires a somewhat elaborate drainage system, movable insulation to cover and uncover the water at appropriate times, and a structural system to support up to 65 lbs/sq ft dead load.

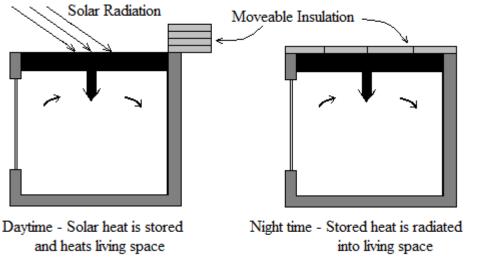


Figure 5. Solar Roof, covered with insulation at night, uncovered during day

A convective loop system uses a flat plate solar collector to heat air or water. The heater air or water then flows by natural convection to directly heat a living space or to a thermal storage area. Two convective loop configurations for space heating are shown in Figure 6. One of the systems has a vertically mounted collector, and the other has the collector mounted at a tilt. Either of these systems can be mounted on an existing wall, so they are quite suitable for retrofit applications. Either of these systems needs two openings into the building, one at the top of the collector for heated air flow into the building, and one at the bottom of the collector for cool air flow from the building into the collector. Some applications use a window on one floor for the upper opening and a window on a lower floor for the bottom opening. The vertically mounted collector, as shown at the right in Figure 6, is also referred to as a solar chimney. Other names used for any of the convective loop systems are isolated gain and thermosiphon system. This type of system can also be used for a passive water heating system as shown in Figure 7.

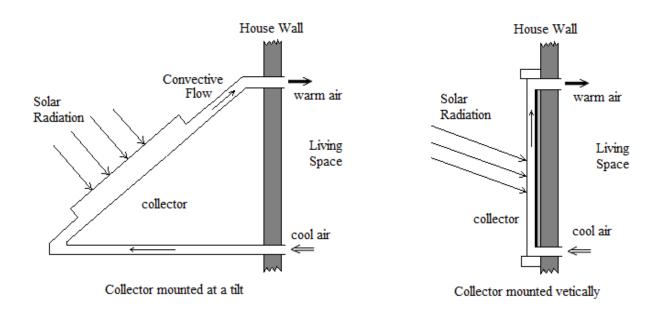


Figure 6. Convective loops to heat living space

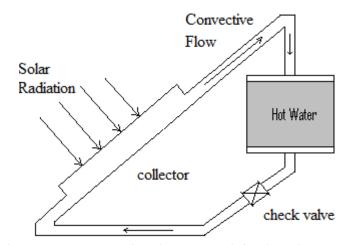


Figure 7. Convective loop, used for heating water

7. Inputs Needed to Estimate Size/Performance of a Passive Solar Heating System

In planning and designing a passive solar heating system, it is often helpful to estimate the performance of a particular passive solar heating system, or to estimate the size system needed to provide a specified percentage of the heating requirements for a building. In order to do either of these, information is typically needed on each of the following: i) heating requirements (degree days) during the heating season at the site of interest, ii) information on the rate of heat loss from the house, and iii) available solar radiation at the site of interest. Sources of information for, or means of estimating those three items, will be discussed in this section. Then the use of that information for sizing and performance calculations will be covered in the next section.

i) Heating requirements (degree days) during the heating season at the site of interest: Data on heating degree days is available from a variety of sources. Two such sources will be discussed here. One very good source of data for passive solar heating applications is *Solar Radiation Data Manual for Buildings*, published by the National Renewable Energy Laboratory (NREL), and available for free download at the website: http://rredc.nrel.gov/solar/pubs/bluebook/. This publication includes data for 239 locations in the United States and its territories, based on data collected from 1961-1990 for those 239 sites. Monthly average and yearly average values for heating degree days are given in the *Solar Radiation Data Manual for Buildings* for each of the 239 sites covered in that publication.

The other source for passive solar heating data that will be discussed in this section, is the second reference in the "Related Links and References" for this course, *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling,* by Bruce Anderson and Malcolm Wells. It is available for free download from the website:

 $\underline{http://www.builditsolar.com/Projects/SolarHomes/PasSolEnergyBk/PSEbook.htm}.$

Appendix 5 of *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, contains data for 236 U.S. Cities based on ASHRAE, *Handbook of Fundamentals*, 1972. Information is given on monthly average heating degree days for the period from September through May, and the yearly total for each of the 236 U.S. cities.

NOTE: Degree days data provides information on heating or cooling requirements for buildings at a given location. The value of degree days for a given day is defined as the difference between the average temperature for the day (calculated by averaging the maximum and minimum temperature for the day) and a base temperature (typically 65° F or 18.3° C). The difference is called heating degree days if the average temperature is less than the base temperature. It is called cooling degree days if the average is greater than the base temperature.

Example #1: Compare the values given in the above two references for annual heating degree days and for January heating degree days for Colorado Springs, CO.

Solution: This simply requires looking up values in the tables in the two references.

From *Solar Radiation Data Manual for Buildings*, page 47 (p 25 of this course), for Colorado Springs, CO:

Annual heating degree days = 6415 °F days

January heating degree days = 1122 °F days

From *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, page 155 (p 26 of this course), for Colorado Springs, CO:

Annual heating degree days = 6423 °F days

January heating degree days = 938 °F days

The agreement between the two sources is pretty good, although the data came from databases covering different timeframes.

ii) Information on the rate of heat loss from the house: A useful way of expressing the rate of heat loss is Btu per heating degree-day per square foot of building floor area. For conventional building design, a heating load of 6 to 8 Btu/°F-day/ft² is considered an energy conservative design. For an older home that is not well insulated and weather-stripped, the heat loss rate would be greater. For a super-insulated home, it would be less than the above guideline. For an existing home that is not well insulated and weather-stripped, it is typically cost-effective to add insulation and/or weather-stripping before adding passive solar components. Goswami, Krieth, & Krieder (ref #1 under "Related Links & References" for this course) suggest reducing the nonsolar rate of heat loss by 20% in conjunction with solarizing of the south-facing wall of a building with passive solar systems. This gives a range of 4.8 to 6.4 Btu/°F-day/ft², as an estimate for the rate of heat loss from a well-insulated and weather-stripped home with passive solar heating system(s) added.

The rate of heat loss per degree-day from a building can be estimated from information about the construction of the building, such as roof area, wall area, insulation thickness, glass area, number of glazing layers, etc. This type of calculation is covered in various HVAC texts and publications and will not be covered here.

Another approach to estimating rate of heat loss from an existing home is through the use of fuel consumption information for that home. Anderson & Wells (ref #2 under "Related Links & References" for this course) discuss this approach on pages 112 & 113 of their book. That discussion is summarized here for several types of heating: fuel oil furnace, natural gas furnace, electric resistance heating and heat pump.

i) **Fuel Oil Furnace:** A gallon of fuel oil has an energy content of 135,00 to 140,000 Btus. If this is multiplied by the furnace efficiency (typically 40 to 70 %) that gives the heat supplied to the house per gallon of fuel oil used.

- ii) **Natural Gas Furnace:** One cubic foot of natural gas contains 1000 Btus of energy. Natural gas consumption is often expressed as hundreds of cubic feet (ccf) or thousands of cubic feet (mcf). As with fuel oil, the amount of energy in the natural gas consumed must be multiplied by the furnace efficiency to get the amount of heat delivered to the house.
- iii) **Electric Resistance Heating:** For electric resistance heating, one kwh of electricity is equivalent to 3400 Btu with electric resistance heating having an efficiency of 100%.
- iv) **Heat Pump:** A heat pump can supply as much as 6800 Btus per kwh of electricity used to operate it.

This information can be used together with an estimate of the amount of fuel or electricity used to heat the home from power bills, to estimate the amount of heat supplied to the house during any month. By the first law of thermodynamics, that must be the amount of heat lost from the house.

Example #2: Data on monthly natural gas consumption for a 2000 ft² home in Albuquerque, NM is given in the table below. Also given in the table are monthly heating degree-days for Albuquerque, NM from the NREL publication, *Solar Radiation Data Manual for Buildings*. Estimate the rate of heat loss from this home in Btu/°F-day/ft² based on this data. Assume 60% efficiency for the furnace.

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Nat'l Gas	070	400	0.5	70	07	4.5	40	47	47	00	0.4	400	4005
Consump., ccf	272	186	95	73	27	15	18	17	17	28	91	186	1025
Heating °F-days	955	700	561	301	89	0	0	0	18	259	621	921	4425

Solution: Ave. gas consumption for June – August (zero heating degree-day months) is:

$$(15 + 18 + 17)/3 = 17 \frac{\text{ccf/month}}{}$$

Total gas consumption for heating season (Sept – May):

$$= 1025 - (15 + 18 + 17) = 975 \text{ ccf}$$

Calculate the annual gas consumption for heating by subtracting the baseline (non-heating) gas consumption of 17 ccf/month:

Gas consumption for heating = 975 - 9*17 = 822 ccf

Converting to Btu: Gas consumption for heating $= 822*10^5 = 8.22*10^7$ Btu

Heat delivered to house $(60\% \text{ efficiency}) = 0.6*8.22*10^7 = 4.93*10^7 \text{ Btu}$

Dividing by the average annual heating degree-days for Albuquerque and the floor area of the house:

Heat loss rate in Btu/°F-day/ft² = $4.93*10^7/4425/2000 = 5.6$ Btu/°F-day/ft²

This seems reasonable. It is in the range of 4.8 to 6.4 Btu/°F-day/ft² given above for a house that is receiving some solar input from south-facing windows.

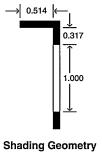
iii) Available solar radiation at the site of interest: Data on incident solar radiation in the United States and around the world are available from various publications and internet websites. The two sources that were introduced in the previous section are especially useful for passive solar heating applications, and will be discussed here.

The first of the two references, *Solar Radiation Data Manual for Buildings*, includes data on monthly average and yearly average incident solar radiation on

horizontal surfaces and on vertical surfaces facing north, east, south and west. Page 117 of this reference, giving data for Kansas City, MO, is shown on the next page.

The first table near the top of the page gives the information about incident radiation. The "global" monthly radiation values given in the table are the average total solar radiation striking the surface, including the effect of cloudiness. "Diffuse" monthly radiation is that part of the global radiation that is made up of ground reflected radiation and sky radiation. The remainder of the global monthly radiation is "direct beam" radiation reaching the surface directly from the sun. The "clear day global" radiation given in the table is the daily amount that would strike the surface on a clear day, when there are no clouds interfering with the path of the sun's rays.

The second table in the example gives monthly and yearly average transmitted radiation with double glazing for horizontal and each of the four vertical surfaces mentioned above. The "shaded" transmitted radiation is for the shading geometry shown at the top of the page for each location. The "unshaded" transmitted radiation is for the case with no awning or overhang above the window. This is discussed further in Section 8, near the end of this course.


Illuninance data and some data on average climatic conditions are given in the last two tables on the page. The example page for Kansas City, MO shows the format for the data available for all 239 locations in the United States and its territories that are included in the publication.

The second source for solar radiation data that was introduced above is *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, by Bruce Anderson and Malcolm Wells. Appendix 2 contains data on hourly solar radiation (Btu/hr/ft² on south walls on sunny days from 7:00 a.m. to 5:00 p.m. solar time for the 21st of each month for six latitudes ranging from 24 to 64 degrees north. Daily totals for solar radiation are also given for each month, at each latitude. Appendix 3 in the same book provides maps of the U.S. showing average percentage of the time that the sun is shining during daylight hours for each month. Information from these two appendices can be used to estimate the average rate of incident solar radiation on a south-facing window for any month at any location in the U.S. Also given by Anderson & Wells is an estimate of 82% for the average portion of incident radiation that will be transmitted through each layer of glass.

Transmitted Solar Radiation for Double Glazing with External Shading — Horiz — North — East — South — West J F M A M J J A S O N D

WBAN NO. 03947

(Not to Scale)

LATITUDE: 39.30° N LONGITUDE: 94.72° W ELEVATION: 1034 feet MEAN PRESSURE: 14.3 psia

STATION TYPE: Secondary

			Average	e Incide	nt Solar	Radiatio	on (Btu/i	t²/day), l	Uncertai	nty ±9%	•			
Orientat	ion	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizon	tal Global	700	940	1240	1610	1870	2050	2080	1830	1460	1120	740	590	1360
	Std.Dev.	57	71	114	112	128	127	144	129	130	107	73	53	42
	Minimum	560	790	980	1330	1560	1750	1800	1550	1060	930	590	490	1280
	Maximum	820	1100	1410	1870	2130	2360	2350	2040	1760	1390	890	700	1490
	Diffuse	300	420	560	680	790	810	760	680	560	410	320	280	550
	Clear-Day Global	940	1280	1760	2230	2530	2640	2560	2290	1870	1390	990	820	1780
North	Global	200	270	350	440	550	630	600	480	380	290	210	180	380
	Diffuse	200	270	350	430	500	530	510	450	370	290	210	180	360
	Clear-Day Global	190	240	320	420	580	680	630	460	350	270	200	160	380
East	Global	480	610	760	940	1040	1110	1130	1040	880	730	500	400	800
	Diffuse	240	330	430	520	590	630	620	550	460	350	260	220	430
	Clear-Day Global	700	900	1140	1350	1450	1470	1440	1350	1180	950	740	630	1110
South	Global	1170	1170	1100	990	850	780	840	980	1130	1280	1120	1030	1040
	Diffuse	350	420	490	530	560	560	560	550	500	430	350	320	470
	Clear-Day Global	1940	1980	1800	1400	1060	910	960	1220	1610	1870	1900	1870	1540
West	Global	480	610	760	940	1070	1160	1190	1080	910	730	500	420	820
	Diffuse	250	330	430	530	600	640	630	570	470	360	260	220	440
	Clear-Day Global	700	900	1140	1350	1450	1470	1440	1350	1180	950	740	630	1110

Average Transmitted Solar Radiation (Btu/ft²/day) for Double Glazing, Uncertainty ±9%

	AVE	iaye iia	1121111111	u Solai	naulatio	ii (Dta/i	17uay) i	OI DOUDI	e Giazii	ig, unce	silanity z	J /0		
Orientation		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizontal	Unshaded	450	640	880	1160	1350	1490	1520	1330	1050	780	490	380	960
North	Unshaded	140	190	240	300	360	410	390	320	260	200	150	120	260
	Shaded	120	170	220	270	320	360	350	290	230	180	130	110	230
East	Unshaded	330	430	540	670	740	790	810	740	620	510	350	280	570
	Shaded	300	380	470	580	630	680	700	650	550	460	310	250	500
South	Unshaded	880	850	760	640	520	470	500	610	760	920	840	780	710
	Shaded	860	790	610	420	350	350	350	380	550	810	810	760	590
West	Unshaded	330	430	540	670	760	830	850	780	650	510	350	280	580
	Shaded	300	380	470	580	660	710	740	680	570	460	320	260	510

Average Climatic Conditions

Element	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Temperature (°F)	25.7	31.2	42.7	54.5	64.1	73.2	78.5	76.1	67.5	56.6	43.1	30.4	53.6
Daily Minimum Temp	16.7	21.8	32.6	43.8	53.9	63.1	68.2	65.7	56.9	45.7	33.6	21.9	43.7
Daily Maximum Temp	34.7	40.6	52.8	65.1	74.3	83.3	88.7	86.4	78.1	67.5	52.6	38.8	63.6
Record Minimum Temp	-17.0	-19.0	-10.0	12.0	30.0	42.0	52.0	43.0	33.0	21.0	1.0	-23.0	-23.0
Record Maximum Temp	69.0	76.0	86.0	93.0	92.0	105.0	107.0	109.0	102.0	92.0	82.0	70.0	109.0
HDD, Base 65°F	1218	946	691	325	135	7	0	6	56	279	657	1073	5393
CDD, Base 65°F	0	0	0	10	107	253	419	350	131	18	0	0	1288
Humidity Ratio (#w/#da)	0.0023	0.0027	0.0040	0.0060	0.0090	0.0125	0.0143	0.0135	0.0107	0.0068	0.0045	0.0029	0.0074
Wind Speed (mph)	10.9	10.9	12.2	12.0	10.3	9.7	9.2	9.0	9.2	10.0	10.7	10.8	10.4
Clearness Index, Kt	0.50	0.50	0.50	0.52	0.53	0.55	0.58	0.56	0.54	0.54	0.48	0.46	0.53

Average Incident Illuminance (klux-hr) for Mostly Clear/Mostly Cloudy Conditions, Uncertainty ±9%

	7101	uge ii	oluçi	it illiali	minui		an,	101 111	y	Oicui,		y 0.0.	auy O	onan	0113, 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ianity	TO /0		
Orientation			March					June				S	eptemb	er			D	ecembe	er	
	9am	11am	1pm	3pm	5pm	9am	11am	1pm	3pm	5pm	9am	11am	1pm	3pm	5pm	9am	11am	1pm	3pm	5pm
Horizontal	34/20	69/42	82/51	68/42	32/20	42/27	81/55	101/70	98/72	73/53	23/13	63/37	85/53	81/53	53/34	11/7	39/23	48/29	33/20	4/3
North	9/8	13/15	15/17	13/15	9/8	20/14	16/17	17/19	17/19	16/16	7/6	13/14	16/17	15/17	12/13	4/3	9/9	10/11	8/8	2/2
East	73/24	62/31	15/17	13/15	9/8	75/35	76/46	38/30	17/19	16/16	61/18	73/34	35/25	15/17	12/13	36/9	43/18	10/11	8/8	2/2
South	35/15	70/34	83/43	69/34	33/15	11/10	28/23	45/35	43/35	24/21	17/8	53/27	75/41	71/41	43/25	30/8	79/27	92/34	70/24	13/4
West	9/8	13/15	16/17	63/32	71/26	11/10	16/17	17/19	46/37	78/50	7/6	13/14	16/17	48/31	75/37	4/3	9/9	16/13	49/18	18/5
M. Clr (%hrs)	34	32	31	30	32	39	40	39	38	41	46	47	47	46	47	35	36	35	36	37

As noted, *Solar Radiation Data Manual for Buildings* and *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling* are available for free download, however all of the pages from these two references needed for the examples in this course and for the quiz are included at the end of the course materials, starting on page 25.

Example #3: Find an estimate of the average amount of solar radiation per day (in Btu/day), which will strike a 24" by 36" south facing window in Kansas City, MO, in January using each of the two references discussed above.

Solution: From *Solar Radiation Data Manual for Buildings*, page 117, (p 14 of this course) the average daily incident global solar radiation on a south-facing surface in Kansas City, MO in January is 1170 Btu/ft²/day. For the 6 ft² window in the example, the daily incident radiation would thus be: (1170 Btu/ft²/day)(6 ft²) = **7020 Btu/day**

NOTE: from page 117 of *Solar Radiation Data Manual for Buildings*, it can be found that the latitude for Kansas City, MO is **39.30° north**. This information can also be found by doing a "Google search" or "Yahoo search" for "Kansas City, MO latitude". Note that you may find a slightly different value for latitude if your source gives the latitude for a different part of the city.

As found in *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, Appendix 2, first page (p 27 of this course): The sunny day solar radiation rate on a south wall for January 21, is 1779 Btu/day/ft² for 32° N latitude and 1726 Btu/day/ft² for 40° N latitude. The value for 39.30° N latitude can be found by interpolation, as follows:

$$1726 + [(40 - 39.30)/(40 - 32)] (1779 - 1726) = 1731 \text{ Btu/day/ft}^2$$

From the map on the first page of Appendix 3 (p 28 of this course), the average % time that the sun is shining in Kansas City, MO, in January, is about 50%, thus the average daily solar radiation striking the south-facing window would be:

$$(0.5)(1731 \text{ Btu/ft}^2/\text{day})(6 \text{ ft}^2) = 5193 \text{ Btu/day}$$

You may have noticed that the numbers from the two sources differ by quite a bit. The data in the two sources come from different databases. The NREL publication uses U.S. Weather Bureau data for the period 1961 – 1990. Anderson & Wells, in their 1981 book, use data from ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers) *Handbook of Fundamentals*, 1972. Also, the NREL data is monthly averages, and the ASHRAE data is for the 21st of the month, so they can be expected to be somewhat different for that reason.

Example #4: From the same two sources used in **Example #3**, find an estimate of the average amount of solar radiation per day (in Btu/day), which will be transmitted through an unshaded 24" by 36" south facing, double pane, glass window in Kansas City, MO, in January.

Solution: From *Solar Radiation Data Manual for Buildings*, page 117 (page 14 of this course), the average daily solar radiation transmitted through an unshaded, south-facing, double pane, glass window, in Kansas City, MO is 880 Btu/ft²/day. For the 6 ft² window in the example, the daily incident radiation would thus be:

$$(880 \text{ Btu/ft}^2/\text{day})(6 \text{ ft}^2) = 5280 \text{ Btu/day}$$

From *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, page 43, approximately 82% of the incident solar radiation will be transmitted through a single layer of glass. Thus, for a double pane window, an estimate of the solar radiation transmitted through the glass can be calculated from the 5193 Btu/day of incident solar radiation calculated above, as follows:

$$(0.82)(0.82)(5193 \text{ Btu/day}) = 3492 \text{ Btu/day}$$

Once again the two estimates differ, because of differences between the two databases used.

8. Size and Performance Calculations for Passive Solar Systems

The primary parameter to be determined in order to size a passive solar heating system, is the area of south-facing glazing. The other major component, heat storage, then can be sized to match the area of glazing. The fraction of a building's heating load that is handled by solar heating is a parameter often used in some way when designing or sizing a passive solar system. A larger area of glazing, will result in larger solar savings fraction for a given building. Anderson & Wells (ref #2 under "Related Links & References" for this course) provide some rules of thumb and guidelines for preliminary sizing of a passive solar heating system. Calculations to check more closely on the preliminary sizing decision can then be made. That approach will be discussed and illustrated with examples here. Another, more detailed, sophisticated calculation procedure is available in Goswami, Krieth, & Krieder (ref #1 under "Related Links & References" for this course).

Anderson & Wells suggest that the average percentage of daytime hours that the sun is shining during the heating season at the location of interest can be used as an estimate of the optimum percentage of the building heating load to be provided by a passive heating system. The average percentage of daytime hours that the sun is shining during the heating season can be obtained from the maps in Appendix 3 of Anderson & Wells' book. Looking at those maps shows that this percentage is approximately 50% for much of the United States. The fraction is notably higher in the southwest and lower in the northwest.

Anderson & Wells also suggest that on the average each square foot of south-facing glazing will supply about the same amount of heat over a heating season as a barrel of fuel oil, about 60,000 Btu. This figure will be lower in very cloudy areas, perhaps as low as half, or 30,000 Btu. In the sunny southwestern U.S., it will be higher, perhaps as high as twice or 120,000 Btu.

Example #5: Using Anderson & Wells' guidelines given above, estimate the approximate glazing area that would be optimum for a passive solar heating system for the Albuquerque house described in **Example #2**.

Solution: From Appendix 3 of Anderson & Wells' book, (pp 28 & 29 of this course) the average percentage of daytime that the sun is shining in Albuquerque, NM is 60 to 65% for Nov, Dec, Jan, & Feb (most of the heating season). Choose a target of 60% solar reduction in heating fuel consumption. From Anderson & Wells' rules of thumb for Btu/sq. ft. of glazing, try 120,000 Btu/ft² as an estimate for the Albuquerque area.

From **Example # 2**, the estimated heat requirement for heating the house in a season is $4.93*10^7$ Btu. The required glazing to deliver 60% of this heat is thus estimated as:

$$(0.6)(4.93*10^7 \text{ Btu})/120,000 \text{ Btu/ft}^2 = 246 \text{ ft}^2$$

Example #6: Using data for heating degree days and rate of solar radiation transmitted through south-facing, double layer glazing in Albuquerque, NM, estimate the percentage of the heating load that would be provided by the 246 ft² glazing area calculated in **Example #5** for the 2000 ft² home in **Example #4**, for each month of the heating season. Use the heat loss rate of 5.6 Btu/°F-day/ft², calculated in **Example #2** for this house.

Solution: The data and calculations are summarized in the spreadsheet table copied below. The second and third columns give monthly values for heating degree-days and solar radiation transmitted through a shaded, double glazed, south-facing window in Albuquerque, NM, from page 148 of the NREL publication, *Solar Radiation Data Manual for Buildings*. (see p 30 of this course) The fourth column was calculated by multiplying the monthly heating degree-days from column 2 times 5.6 Btu/°F-day/ft² times the 2000 ft² floor area of the house. The monthly solar % given in the sixth column is simply column 5 divided by column 4, expressed as a percentage.

Albuquerque, NM

	heating	Solar Input	Heating Requirement	Solar Heat Input (246 f f)	Solar
<u>Month</u>	<u>∘F-days</u>	Btu /day/ff	<u>Btus</u>	<u>Btus</u>	<u>%</u>
Jan	955	1220	10,696,000	9,303,720	87.0%
Feb	700	1110	7,840,000	8,464,860	108.0%
Mar	561	800	6,283,200	6,100,800	97.1%
Apr	301	490	3,371,200	3,736,740	110.8%
May	89	360	996,800	2,745,360	275.4%
June	0				
July	0				
Aug	0				
Sept	18	650	201,600	4,956,900	2458.8%
Oct	259	1040	2,900,800	7,931,040	273.4%
Nov	621	1200	6,955,200	9,151,200	131.6%
Dec	921	1200	10,315,200	9,151,200	88.7%

Discussion of Results: The solar percentage results are quite high, indicating that the 246 ft² glazing area is more than required for this area of the country. Thus the calculations will be repeated with 170 ft² of south-facing glazing instead of 246 ft². The results are summarized in the table below. These results are much closer to the target level of 60% of heating requirement to be supplied by the solar system. There is more than enough solar input for the heating requirements in May, September and October. For the rest of the heating season, the solar percentage is between 57% and 86%.

Albuquerque, NM

			Heating	Solar Heat	
	heating	Solar Input	Requirement	Input (160 f t°)	Solar
<u>Month</u>	<u>∘F-days</u>	Btu /day/ft²	<u>Btus</u>	<u>Btus</u>	<u>%</u>
Jan	955	1220	10,696,000	6,051,200	56.6%
Feb	700	1110	7,840,000	5,505,600	70.2%
Mar	561	800	6,283,200	3,968,000	63.2%
Apr	301	490	3,371,200	2,430,400	72.1%
May	89	360	996,800	1,785,600	179.1%
June	0				
July	0				
Aug	0				
Sept	18	650	201,600	3,224,000	1599.2%
Oct	259	1040	2,900,800	5,158,400	177.8%
Nov	621	1200	6,955,200	5,952,000	85.6%
Dec	921	1200	10,315,200	5,952,000	57.7%

Example #7: To illustrate the effect of climate in a different part of the country repeat the last set of calculations for Kansas City, MO. Use 160 ft² of glazing, 2000 ft² floor area and 5.6 Btu/°F-day/ft² as the heat loss rate for the house.

Solution: The calculations are summarized in the table below. The data for heating degree-days and solar input through south-facing glazing came from page 117 of the NREL publication, *Solar Radiation Data Manual for Buildings*. (p 14 of this course) The other columns were calculated just the same as above.

Kansas City, MO

			Heating	Solar Heat	
	heating	Solar Input	Requirement	Input (200 ft²)	Solar
<u>Month</u>	<u>∘F-days</u>	Btu /day/ft ²	<u>Btus</u>	<u>Btus</u>	<u>%</u>
Jan	1218	880	13,641,600	4,364,800	32.0%
Feb	946	850	10,595,200	4,216,000	39.8%
Mar	691	760	7,739,200	3,769,600	48.7%
Apr	325	640	3,640,000	3,174,400	87.2%
May	135	520	1,512,000	2,579,200	170.6%
June	7				
July	0				
Aug	6				
Sept	56	760	627,200	3,769,600	601.0%
Oct	279	920	3,124,800	4,563,200	146.0%
Nov	657	840	7,358,400	4,166,400	56.6%
Dec	1073	780	12,017,600	3,868,800	32.2%

As was the case for Albuquerque, there is more than enough solar input from 160 ft² of south-facing glazing to provide the heating requirements for May, September and October. For the rest of the heating season, however, the solar percentage is between 32% and 87% for Kansas City, as compared with 56% to 83% for Albuquerque. The solar percentage is significantly lower in Kansas City than in Albuquerque for all of the months except April. There are indeed less clouds in the sky in the southwestern U.S.

The glazing area determined by this method can be taken as an approximate value. More area or less area may be used to accommodate convenient sizes of components actually used for the passive solar heating system. In fact, Anderson & Wells (ref #2 under "Related Links & References" for this course), suggest that your answer to the question, "How large do you want the system to be?" is a common, direct, and useful method of determining size. The calculations illustrated above, however, provide a means of estimating solar % of heating requirement for a given size passive solar system, at a given location, with given building heat loss characteristics.

9. Choice of the Type(s) of Passive Solar System to Use

After deciding upon an approximate total area of glazing, it is necessary to choose from among the five basic passive solar heating systems discussed above, **direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop.** Any combination can be used to come up with the desired total area of glazing.

For retrofit on an existing home, the attached sunspace and the convective loop (solar chiminey) are especially suitable. Also, one may add more south-facing windows or upgrade existing south-facing windows to increase direct gain. If a thermal storage wall were to be used for retrofit, the choice would probably be made for a "water wall" rather than a masonry wall, because of the difficulty of inserting a masonry wall for retrofit.. A thermal storage roof (roof pond) is another possibility to go onto a flat roof or into an attic under glazing on a pitched roof. Remember, however, that a thermal storage roof requires a somewhat elaborate drainage system, movable insulation to cover and uncover the water at appropriate times, and a structural system to support up to 65 lbs/sq ft dead load.

For new construction, any combination of the five types of systems can be used. Maximizing southern exposure for the building and using a lot of south-facing windows would be typical in order to obtain direct gain of solar heat. A masonry thermal storage wall in front of some of the south-facing glazing, could readily be included for new construction. An attached sunspace works best if the back of the house faces south.

10. Sizing Solar Storage

Both of the references mentioned in the previous couple of sections include guidelines for required quantity of thermal storage. Anderson & Wells, in *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, (ref #2 under "Related Links & References" for this course), give a rule of thumb for thermal storage requirement as 2 cubic feet of concrete, brick or stone for each square foot of glazing, if the sun shines directly upon the storage material. If the sun heats air, which in turn heats the thermal storage material, then the requirement

is given as four times that much, or 8 cubic feet of masonry storage per square foot of glazing.

Goswami, Krieth, & Krieder (ref #1 under "Related Links & References" for this course) give a rule of thumb that there should be 613 kJ/°C for each m² of glazing, if the sunlight shines directly on the storage material. They also give a requirement of four times that much if the sunlight does not shine directly on the storage mass. Converting units, this rule of thumb is equivalent to 30 Btu/°F for each ft² of glazing. This can be converted to the volume of material needed for thermal storage in ft³ using the information in table 1, below.

Table 1. Thermal Properties of Some Materials

Specific Heat Density Heat Condition Material (Btu/lb/°F) lb/ft ³ Btu	<u>/ft³/°F</u>
Air (75°F) 0.24 0.075 0.	018
Sand 0.191 94.6 1	8.1
White Pine 0.67 27 1	8.1
Gypsum 0.26 78 2	0.3
Adobe 0.24 106	25
White Oak 0.57 47 2	6.8
Concrete 0.2 140	28
Brick 0.21 140	28
Heavy Stone 0.21 180	38
Water 1 62.5	2.5

The volume of any of the materials in Table 1, needed per ft² of glazing can be found by dividing 30 Btu/°F by the volumetric heat capacity (Btu/ft³/°F) for that material. For example (30/28) ft³ of concrete or brick (or approximately 1 ft³) is needed for thermal storage per square foot of glazing based on the above rule of thumb. By comparison, only 30/62.5, or about ½ cubic foot of water is needed per square foot of glazing.

As you can see, Anderson & Wells give a more conservative thermal storage requirement than Goswami, Krieth, & Krieder.

11. Controls - Summer Shading of Passive Solar Glazing

In order to reduce unwanted heat gain in the summer, it is helpful to provide shading above south-facing solar glazing. The NREL publication, *Solar Radiation Data Manual for Buildings*, provides recommendations for summertime shading of south-facing vertical passive solar glazing. Near the top of the page for each of the 239 stations represented in the publication, there is a figure similar to Figure 8, below, showing the length of overhang and height of overhang above the top of the glazing for each foot of vertical height of the glazing. The recommended shading geometry provides a balance between the need for maximum heat gain during the heating season without creating unreasonable heat gain during the cooling season. This can be done because the sun is much lower in the sky in the winter than in the summer, as illustrated in Figure 9, below.

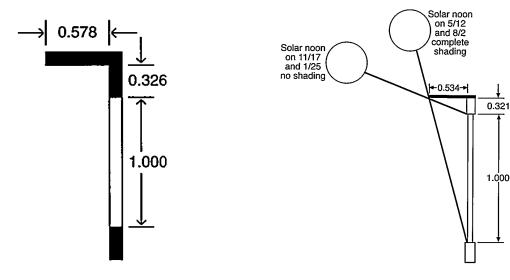


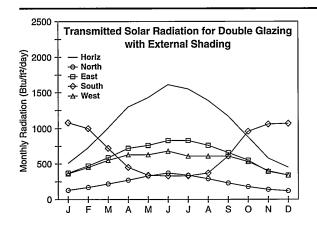
Figure 8. Recommended Shading Geometry

Figure 9. Effect of Winter & Summer Solar Altitude Angle

12. Construction Details

Information on construction details is available from various sources. For example in *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling*, by Anderson & Wells (ref #2 under "Related Links & References" for this course). Also the first website listed under "Related Links & References" for this course, http://www.builditsolar.com/Projects/SpaceHeating/Space_Heating.htm#Basics, has information and plans for many DIY passive solar projects.

13. Related Links and References


References:

1. Goswami, D. Y., Krieth, Frank, and Kreider, Jan F., *Principles of Solar Engineering*, Philadelphia: Taylor & Francis, 2000.

2. Anderson, Bruce & Wells, Malcolm, *Passive Solar Energy: The Homeowners Guide to Natural Heating and Cooling,* Andover MA: Brickhouse Publishing Co., 1981 (available for free download at the website given below:) http://www.builditsolar.com/Projects/SolarHomes/PasSolEnergyBk/PSEbook.htm

Websites:

- 1. Solar DIY Space Heating Projects http://www.builditsolar.com/Projects/SpaceHeating/Space_Heating.htm#Basics
- 2. Passive Solar Heating & Cooling Arizona Solar Center http://www.azsolarcenter.com/technology/pas-2.html

Colorado Springs, CO

WBAN NO. 93037

LATITUDE: 38.82° N
LONGITUDE: 104.72° W
ELEVATION: 6172 feet
MEAN PRESSURE: 11.8 psia

STATION TYPE: Secondary

Shading Geometry (Not to Scale)

→ 0.500 ←

Average Incident Solar Radiation (Btu/ft²/day), Uncertainty ±9%

			Averag	s interact	it Solai	iadiatic	יווי (שוכטו	c /uuy /, c	moci ta	11ty -57				
Orientatio	on	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizonta	al Global	800	1070	1420	1790	1960	2200	2110	1910	1630	1270	880	720	1480
	Std.Dev.	49	54	97	97	113	136	117	107	104	97	49	42	41
	Minimum	690	950	1170	1530	1740	1950	1930	1650	1360	1010	800	640	1410
	Maximum	890	1150	1610	2000	2210	2440	2350	2120	1820	1420	990	800	1550
	Diffuse	260	350	500	610	710	670	660	600	470	350	280	240	480
	Clear-Day Global	1010	1370	1870	2380	2680	2790	2710	2430	2000	1500	1080	900	1900
North	Global	200	260	350	440	560	640	590	470	360	280	220	180	380
	Diffuse	200	260	350	420	480	500	480	430	360	280	220	180	350
	Clear-Day Global	180	230	310	420	600	730	660	470	330	260	190	160	380
East	Global	580	740	940	1140	1220	1340	1340	1220	1050	860	620	530	970
	Diffuse	250	320	430	520	570	580	570	530	440	350	270	230	420
	Clear-Day Global	780	990	1250	1470	1580	1600	1560	1470	1290	1050	810	710	1210
South	Global	1450	1450	1300	1090	860	790	820	1000	1270	1510	1450	1430	1200
	Diffuse	360	420	490	530	540	520	520	520	480	420	370	330	460
	Clear-Day Global	2110	2120	1900	1440	1050	880	940	1230	1670	2010	2080	2060	1620
West	Global	580	710	870	1010	1030	1110	1000	990	960	840	630	530	860
	Diffuse	250	330	440	530	580	590	580	530	450	350	270	230	430
	Clear-Day Global	780	990	1250	1470	1580	1600	1560	1470	1290	1050	810	710	1210

Average Transmitted Solar Radiation (Btu/ft²/day) for Double Glazing, Uncertainty ±9%

Orientation		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizontal	Unshaded	510	730	1010	1300	1430	1610	1550	1390	1170	880	580	450	1050
North	Unshaded	140	180	240	300	360	410	380	310	250	200	150	130	250
	Shaded	130	170	220	270	330	370	340	290	230	180	140	120	230
East	Unshaded	400	520	670	820	870	960	970	880	750	610	430	360	690
	Shaded	370	470	590	720	760	830	830	760	660	550	390	340	610
South	Unshaded	1100	1070	900	700	520	460	480	620	850	1080	1090	1080	830
	Shaded	1080	1000	720	450	340	330	330	370	610	960	1060	1070	690
West	Unshaded	400	500	610	720	730	790	710	700	680	590	430	370	600
	Shaded	360	450	550	630	630	680	610	610	610	530	400	340	530

Average Climatic Conditions

Element	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Temperature (°F)	28.8	32.0	37.3	46.4	55.4	65.0	70.8	68.3	60.4	49.9	37.8	29.8	48.5
Daily Minimum Temp	16.1	19.3	24.6	33.0	42.1	51.1	57.1	55.2	47.1	36.3	24.9	17.4	35.4
Daily Maximum Temp	41.4	44.6	50.0	59.8	68.7	79.0	84.4	81.3	73.6	63.5	50.7	42.2	61.6
Record Minimum Temp	-26.0	-27.0	-11.0	-3.0	21.0	32.0	42.0	43.0	22.0	5.0	-8.0	-24.0	-27.0
Record Maximum Temp	72.0	76.0	81.0	83.0	93.0	100.0	100.0	99.0	94.0	86.0	78.0	77.0	100.0
HDD, Base 65°F	1122	924	859	558	302	87	6	18	164	468	816	1091	6415
CDD, Base 65°F	0	0	0	0	0	87	186	120	26	0	0	0	419
Humidity Ratio (#w/#da)	0.0018	0.0020	0.0024	0.0033	0.0051	0.0070	0.0089	0.0089	0.0064	0.0038	0.0025	0.0019	0.0045
Wind Speed (mph)	9.2	9.6	10.6	11.3	10.8	9.7	8.9	8.5	9.2	9.5	9.4	8.9	9.6
Clearness Index, Kt	0.56	0.57	0.57	0.58	0.56	0.60	0.59	0.58	0.59	0.60	0.56	0.55	0.58

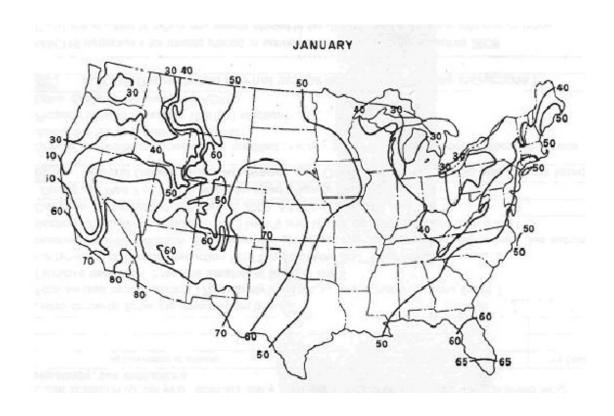
Average Incident Illuminance (klux-hr) for Mostly Clear/Mostly Cloudy Conditions, Uncertainty ±9%

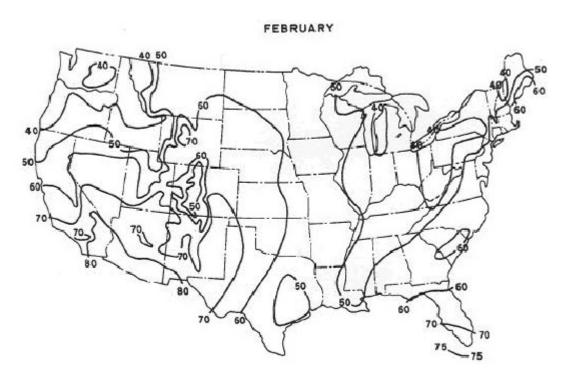
Orientation	March					June				September					December					
	9am	11am	1pm	3pm	5pm	9am	11am	1pm	3pm	5pm	9am	11am	Ipm	3pm	5pm	9am	11am	lpm	3pm	5pm
Horizontal	44/29	76/51	84/59	66/45	28/18	52/35	87/65	102/78	97/66	69/46	33/19	71/47	87/60	80/54	48/32	18/12	45/31	50/35	31/21	2/2
North	10/10	13/15	14/17	12/14	8/7	18/15	15/17	16/17	16/17	13/14	8/8	13/15	15/17	14/16	11/11	6/5	10/10	10/11	8/8	1/1
East	83/39	57/36	14/17	12/14	8/7	87/45	72/52	28/26	16/17	13/14	79/29	72/42	26/23	14/16	11/11	52/20	41/24	10/11	8/8	1/1
South	45/24	76/45	84/53	66/39	28/14	11/11	30/27	44/37	39/30	17/16	25/12	59/36	75/48	68/43	39/22	49/19	90/45	95/52	69/33	8/3
West	10/10	13/15	25/22	70/41	74/28	11/11	15/17	16/17	53/38	82/48	8/8	13/15	15/17	56/37	81/39	6/5	10/10	24/18	55/27	11/4
M. Clr (%hrs)	42	42	34	31	31	60	59	52	36	31	58	59	56	49	45	47	47	44	45	50

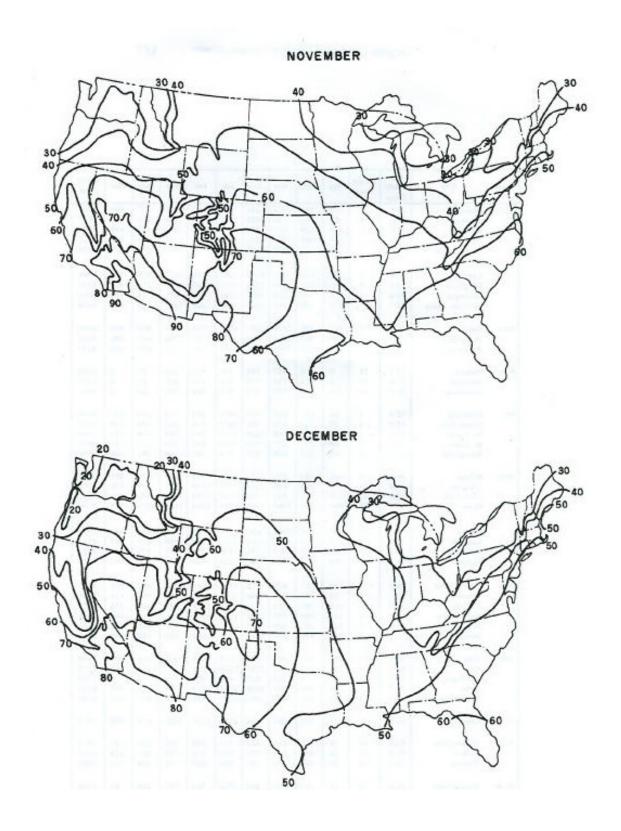
47

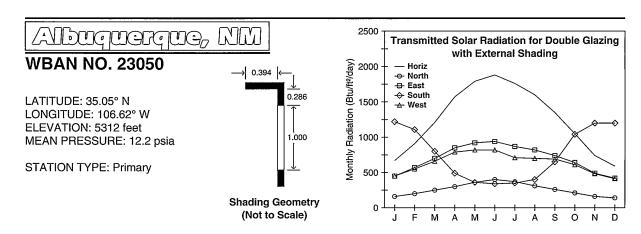
Degree Days and Design Temperatures 155

State	City	Avg. Winter Temp	Design Temp	5ер	Oct	Nes	Dec	Jan	Feb	Mar	Apr	May	Year
Ala.	Birminghum	54.2	19	6	93	363	555	592	462	363	108	9	255
	Huntsville	51.3	13	12	127	426	663	694	557	434	138	19	307
	Mobile	59.9	26	0	22	213	357	415	300	211	42	0	1.56
	Montgomery	55.4	22	0	68	330	527	543	417	316	90	0	229
Alaska	Anchorage	23.0	-25	516	930	1284	1572	1631	1316	1293	879	592	1086
	Fairbanks	6.7	-53	642	1203	1833	2254	2359	1901	1739	1068	555	1427
	Juneau	32.1	- 7	483	725	921	1135	1237	1070	1073	810	106	907
	Nome	13.1	-32	693	1094	1455	1820	1879	1666	1770	1314	930	1417
Ariz.	Flagstaff	35.6	0	201	358	867	1073	1169	991	91t	651	437	715
	Phoenix	58.5	31	U	22	234	415	474	328	217	75	0	176
	Tucson	58.1	29	0	25	231	406	471	344	242	75	6	180
	Winslow	43.0	9	6	245	711	1008	1054	770	601	291	96	478
	Yuma	64.2	37	0	0	108	264	307	190	90	15	0	97
Ark.	Fort Smith	50.3	9	12	127	450	704	781	596	456	144	22	329
	Little Rock	50.5	19	9	127	465	716	756	577	434	126	9	321
	Texarkana	54.2	22	0	78	345	561	626	468	350	105	0	253
Salif.	Bakersfield	55.4	31	0	37	282	502	546	364	267	105	19	212
California,	Burbank	58.6	36	6	43	177	301	366	277	239	138	81	164
	Eureka	49.9	32	258	329	414	400	546	470	505	438	372	464
	Fresno	53.3	28	0	84	354	577	605	426	335	162	62	261
	Long Beach	57.8	36	9	47	171	316	397	311	264	171	93	180
	Los Angeles	57.4	-81	42	78	180	291	372	302	288	219	158	206
	Oakland	53.5	35	45	127	309	481	527	400	353	255	180	287
	Sacramento	53.9	30	0	56	321	546	583	414	332	178	72	250
	San Diego	59.5	42	21	43	135	216	298	235	214	135	90	145
	San Francisco	55.1	42	102	118	231	388	443	336	319	279	239	300
	Santa Maria	54.3	32	96	146	270	391	459	370	363	282	233	296
Cole:	Alamosa	29.7	-17	279	639	1065	1420	1476	1162	1020	696	440	852
	Colorado Springs	37.3	- 1	132	456	825	1032	1128	938	893	582	319	642
	Denver	37.6	- 2	117	428	819	1035	1132	938	887	558	288	628
	Grand Junction	39.1	8	30	313	786	1113	1209	907	729	387	146	564
	Pueblo	40.4	- 5	54	326	750	986	1085	871	772	429	174	546
Conn.	Bridgeport	39.9	4	66	307	615	986	1079	966	853	510	208	561
	Harrford	37.3	1	117	394	714	1101	1190	1042	908	519	205	623
	New Haven	39.0	5	87	347	648	1011	1097	991	871	543	245	589
Del.	Wilmington	42.5	12	51	270	588	927	980	874	735	387	112	493
D. C.	Washington	45.7	16	33	217	519	834	871	762	626	288	74	422
Fla.	Daytona Beach	69.3	3.2	0	0	75	211	248	190	140	15	0	87
	Fort Myers	68.6	38	0	0	24	109	146	101	62	0	0	44
	Jacksonville	61.9	29	0	12	144	310	332	246	174	21	0	123
	Key West	73.1	55	0	0	0	28	40	31	9	0	0	10
	Lakeland	66.7	35	0	0	57	164	195	146	99	0	0	66
	Miami	71.1	44	0	0	0	65	74	56	19	0	0	21
	Miami Beach	72.5	45	0	0	0	40	56	36	9	0	0	14
	Orlando	65.7	33	0	.0	72	198	220	165	105	6	0	76
	Pensacola	60.4	29	0	19	195	353	400	277	183	36	0	146
	Tallahassee	60.1	25	0	28	198	360	375	286	202	36	0	148
								-		-			3.07


Appendix 2


Solar Radiation on South Walls on Sunny Days *


Date	Solar	Time		Solar R	adiation per squ	ı, Btus p are foot	er hour	
	AM	PM		3	Latitude	(North)	
			24	32	40	48	56	64
Jan 21	7	5	31	1	0	0	0	(
	8	4	127	115	84	22	0	0
	9	3	176	181	. 171	139	60	0
	10	2	207	221	223	206	153	20
	11	1	226	245	253	243	201	81
	1	2	232	253	263	255	217	103
	Daily	Totals	1766	1779	1726	1478	1044	304
Feb 21	7	5	46	38	22	4	0	0
	8	4	102	108	107	96	69	19
	9	3	141	158	167	167	151	107
	10	2	168	193	210	217	208	173
	11	1	185	214	236	247	243	213
	1	2	191	222	245	259	255	226
	Daily	Totals	1476	1644	1730	1720	1598	1252
March 31	7	5	27	32	35	35	32	25
	8	4	64	78	89	96	97	89
	9	3	95	119	138	152	154	153
	10	2	120	150	176	195	205	203
	11	1	135	170	200	223	236	235
	1	2	140	177	208	232	246	246
	Daily	Totals	1022	1276	1484	1632	1700	1656


^{*} Courtesy ASHRAE, Handbook of Fundamentals.

Appendix 3: Maps of the Average Percentage of the Time the Sun is Shining

Average Incident Solar Radiation (Btu/ft²/day), Uncertainty ±9%

							\	- , , , ,		,				
Orientati	on	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizont	al Global	1010	1320	1700	2160	2430	2560	2380	2180	1860	1500	1100	910	1760
	Std.Dev.	79	96	121	91	119	105	81	93	95	101	79	74	56
	Minimum	830	1100	1410	1950	2170	2350	2160	1870	1700	1270	890	710	1630
	Maximum	1140	1470	1930	2310	2630	2720	2510	2350	2070	1680	1220	1030	1850
	Diffuse	310	400	540	600	650	640	700	640	520	390	310	280	500
	Clear-Day Global	1200	1550	2020	2490	2740	2830	2730	2490	2120	1660	1250	1080	2020
North	Global	240	300	390	480	620	700	630	500	400	320	250	220	420
	Diffuse	240	300	390	450	510	520	520	470	400	320	250	220	380
	Clear-Day Global	210	260	330	430	620	750	680	480	350	280	220	190	400
East	Global	700	870	1070	1310	1430	1460	1360	1270	1130	970	750	650	1080
	Diffuse	300	380	480	560	610	610	620	570	490	400	310	270	470
	Clear-Day Global	870	1070	1300	1490	1580	1580	1540	1470	1320	1110	900	810	1250
South	Global	1640	1620	1430	1170	900	760	810	1020	1320	1620	1640	1610	1290
	Diffuse	410	470	540	550	540	530	540	540	520	470	410	380	490
	Clear-Day Global	2190	2130	1830	1330	930	760	820	1110	1580	1990	2130	2160	1580
West	Global	690	850	1010	1220	1290	1290	1140	1120	1060	940	740	630	1000
	Diffuse	300	380	480	570	620	620	620	580	500	400	320	270	470
	Clear-Day Global	870	1070	1300	1490	1580	1580	1540	1470	1320	1110	900	810	1250

Average Transmitted Solar Radiation (Btu/ft²/day) for Double Glazing, Uncertainty ±9%

	740	nage me		a Colui	liudiulio	ii (Dtaii	it rauy; i	o, Doub,	Calarii	19, 0110	ortainity 2	.0 /0		
Orientation		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Horizontal	Unshaded	670	910	1210	1570	1790	1880	1760	1600	1350	1050	740	590	1260
North	Unshaded	170	210	270	320	390	440	400	330	270	220	170	150	280
	Shaded	160	200	250	300	360	400	370	310	260	210	160	140	260
East	Unshaded	490	610	770	940	1020	1050	970	910	810	690	520	450	770
	Shaded	450	570	700	850	920	940	870	820	740	640	490	420	700
South	Unshaded	1230	1170	970	720	510	430	460	600	860	1140	1220	1210	880
	Shaded	1220	1110	800	490	360	340	350	400	650	1040	1200	1200	760
West	Unshaded	480	600	720	870	920	920	800	790	750	660	510	440	700
	Shaded	450	550	660	790	820	820	710	700	690	610	480	410	640

Average Climatic Conditions

Element	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
Temperature (°F)	34.2	40.0	46.9	55.2	64.2	74.2	78.5	75.9	68.6	57.0	44.3	35.3	56.2
Daily Minimum Temp	21.7	26.4	32.2	39.6	48.6	58.3	64.4	62.6	55.2	43.0	31.2	23.1	42.2
Daily Maximum Temp	46.8	53.5	61.4	70.8	79.7	90.0	92.5	89.0	81.9	71.0	57.3	47.5	70.1
Record Minimum Temp	-17.0	-5.0	8.0	19.0	28.0	40.0	52.0	52.0	37.0	21.0	-7.0	-7.0	-17.0
Record Maximum Temp	69.0	76.0	85.0	89.0	98.0	105.0	105.0	101.0	100.0	91.0	77.0	72.0	105.0
HDD, Base 65°F	955	700	561	301	89	0	0	0	18	259	621	921	4425
CDD, Base 65°F	0	0	0	7	64	279	419	338	126	11	0	0	1244
Humidity Ratio (#w/#da)	0.0025	0.0027	0.0028	0.0031	0.0042	0.0058	0.0092	0.0097	0.0077	0.0049	0.0033	0.0027	0.0049
Wind Speed (mph)	8.3	8.8	10.1	11.0	10.7	10.0	9.0	8.4	8.6	8.1	8.1	7.9	9.1
Clearness Index, Kt	0.62	0.63	0.64	0.68	0.69	0.70	0.66	0.66	0.65	0.65	0.62	0.61	0.66

Average Incident Illuminance (klux-hr) for Mostly Clear/Mostly Cloudy Conditions, Uncertainty ±9%

Orientation	March					June					September					December				
	9am	11am	1pm	3pm	5pm	9am	11am	1 pm	3pm	5pm	9am	Ham	1pm	3pm	5pm	9am	l lam	1pm	3pm	5pm
Horizontal	45/31	82/61	93/71	76/55	34/23	49/39	88/73	109/91	104/83	75/57	31/20	74/54	94/75	87/67	54/40	22/15	52/36	60/43	40/28	5/4
North	10/11	14/17	15/18	14/16	9/9	23/19	15/18	16/19	16/19	14/16	8/8	14/16	16/19	15/18	12/13	7/6	11/12	12/13	9/10	2/2
East	85/44	63/44	15/18	14/16	9/9	85/56	75/60	33/32	16/19	14/16	75/32	76/49	31/29	15/18	12/13	58/25	47/28	12/13	9/10	2/2
South	41/25	74/50	83/60	67/45	31/17	11/12	24/25	39/37	35/33	15/17	21/13	55/38	73/56	67/49	40/26	51/22	91/48	99/57	77/39	17/7
West	10/11	14/17	23/23	73/48	81/36	11/12	15/18	16/19	53/45	85/58	8/8	14/16	16/19	55/42	83/48	7/6	11/12	23/19	60/32	25/9
M. Clr (%hrs)	53	47	42	40	42	76	77	75	60	49	64	65	64	59	50	54	54	49	50	51

148