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1.0 INTRODUCTION 

 

Bracing systems serve a number of important roles in both straight and horizontally curved 

bridges.  The braces provide stability to the primary girders as well as improving the lateral or 

torsional stiffness and strength of the bridge system both during construction and in service.  

Depending on the geometry of the bridge, braces may be designated as either primary or 

secondary members.  In the AASHTO LRFD Specifications [1], the member designation as 

primary or secondary is typically assigned based upon whether the member has a design force 

obtained from a structural analysis.  For example, a first-order analysis on a straight bridge 

during construction will often result in no forces in the cross frames and the braces are often 

designated as a secondary member.  In many situations, the removal of the brace can result in a 

partial or complete collapse of the structure due to instabilities that can develop as a result of the 

larger unbraced length.  In cases such as this, the engineer needs to recognize the importance of 

the brace and design the members accordingly.  This module provides an overview of the design 

requirements of the braces so that engineers can properly size the members to ensure adequate 

strength and stiffness.   

 

In general, this module discusses the design of bracing systems for the superstructures of straight 

and curved girder systems.  I-girder and box shaped members are covered throughout this 

module. Bracing for other types of bridges, such as truss, arch or towers is not specifically 

addressed; however much of the information included in the module may be applicable.   

 

The module has been divided into five primary sections.  Following this introduction, an 

overview of bracing utilized for I-girders is covered.  A discussion of the bracing systems for tub 

girders is then provided.  The next section of the module outlines the design requirements for the 

members and connections of bracing systems.  The final section contains simplified solutions for 

the calculation of geometric properties for tub girders. 

 

Regardless of whether the bracing systems are utilized in straight or horizontally curved girders, 

a clear understanding of the torsional behavior of both I-shaped and tub girder sections is 

important.  The need for torsional stiffness in horizontally curved girders is relatively obvious 

since the girders are subjected to large torques due to the geometry of the bridge.  However, 

understanding the necessity of adequate torsional stiffness in straight girders is also important 

since lateral-torsional buckling often controls the design of the girders during construction.  In 

many sections, such as tub girders, the presence of bracing dramatically impacts the torsional 

stiffness of the section.  Lateral instability of flexural members always involves torsion of the 

cross section.  Therefore, the remainder of this introductory section is focused on the torsional 

stiffness of open and closed cross sections as well as a discussion of the buckling behavior of 

steel bridge systems.  

 

1.1 Torsional Behavior of Open and Closed Girders 

 

Torsional moments are resisted by the shear stresses on the girder cross section. The torsional 

resistance in thin-walled structures is usually categorized as either Saint-Venant torsional 

stiffness or warping torsional resistance. The Saint-Venant stiffness is often referred to as 

uniform torsion since the stiffness does not vary along the length and is also not sensitive to the 
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support conditions of the section.  St. Venant torsion results in a pure shear deformation in the 

plane of the plates that make up the member.  

 

The warping torsional resistance, on the other hand, is often referred to as non-uniform torsion 

since the stiffness is associated with the bending deformation in the plane of the individual 

plates.  The warping stiffness of a section is related to the member’s resistance to warping 

deformation.  Two I-shaped sections subjected to a torque at the ends are shown in plan in Figure 

1 to illustrate warping deformation and also warping stiffness.  Figure 1a shows that warping 

deformation consists of a twist of the flanges relative to each other about a vertical axis through 

the web.  Warping deformation distorts the cross section such that it no longer is a plane section 

because the two flanges have distorted relative to each other.  Twist about the longitudinal axis 

of the member in Figure 1a is prevented at one end, however the warping deformations are not 

restrained.  Since the section is free to warp along the entire length, the flanges remain straight as 

they twist relative to each other and the member only possesses St. Venant torsional stiffness.   

 

warping

deformation

a) warping
permitted

b) warping
restrained

 
Figure 1  Warping Stiffness is Related to the Bending Stiffness of the Plate Elements. 

 

The wide flange section in Figure 1b has both twist and warping deformation prevented at one 

end.  With warping restrained at just one location along the length, the member cannot twist 

without bending the flanges.  Since the flanges must bend if the member twists, the section 

therefore has warping stiffness.  The warping torsion produces longitudinal stresses in the 

flanges of the member.      

 

Many members do not have a physical restraint preventing warping as shown in Figure 1b, 

however the member still has warping stiffness if twist is prevented at a minimum of two points 

along the longitudinal axis.  The twist restraint can come from sources such as cross frames that 

prevent the section from rotating about the longitudinal axis, but otherwise do not specifically 

restrain warping deformation of the section.  Since the bending stiffness is very sensitive to the 

unsupported length, the warping stiffness is highly variable with the unbraced length. 

 

In general, both Saint-Venant and warping torsional stiffness are developed when thin-walled 

members are twisted.  The torsional moment resistance, TT, of a section is a function of the 

uniform torsional (TUT) and warping torsional (TW) components as follows: 

 

 TT = TUT + TW (1) 

 

The uniform torsional component can be expressed as follows: 
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where G is the shear modulus, J is the torsional constant,  is the rotation of the cross section, 

and x denotes the longitudinal axis of the member. The torsional constant of an open section is 

given by the following expression:   
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where bi and ti are the respective width and thickness of the plate elements that make up the cross 

section of the girder.  The torsional constant for single cell box or tub girders is given by 
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where A0 is the enclosed area of the cross section of the box girder, and the variables bi and ti in 

the summation are the respective width and thickness of the ith plate that make up the cross 

section.  For example, in a box or tub girder with a cross section made up of four plates, the 

denominator in Equation 4 is calculated by simply summing the width-to-thickness ratios of the 

four plate elements.  A0 is typically defined by the area enclosed from the mid-thickness of the 

plates that make up the cross section.   

 

The warping torsional component can be expressed as follows: 
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where E is the modulus of elasticity, and Cw is the warping constant.  For I-shaped sections bent 

in the plane of the web, the warping constant is given by the expression: 

 

 CW = It ho
2
 (1-)

 
(6) 
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(7) 

 

where Iyc and Iy are the respective moments of inertia for the compression flange and the entire 

section about an axis through the web, and ho is the spacing between flange centroids.  For a 

doubly symmetric section, the value of  is 0.5 and Equation 6 reduces to the following 

expression: 
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A rigorous theory for warping torsion was established by Vlasov [2]. The warping torsional 

stiffness often plays an important role in the total stiffness in girders with an open cross section 

such as I-shaped girders.  For open sections with a relatively long length, the St. Venant stiffness 

dominates the total stiffness, while for shorter segments the warping torsional stiffness plays a 

much more significant component in the total stiffness.  Closed box or tub girders are usually 

dominated by Saint-Venant torsion due to the closed cross section and the longitudinal normal 

stresses due to warping torsion are usually negligible [2]. The large Saint-Venant stiffness of a 

box or tub girder provides a torsional stiffness that may be 100~1000 times that of a comparable 

I-section. 

 

The shear stress due to Saint-Venant torsion can be solved using Prandtl’s membrane analogy 

[2]. For example, for girders with a single cell cross-section, a uniform shear flow, q, develops 

along the perimeter of the box and can be determined using the Bredt’s equation: 

 

 0

T

2A

T
t=q 

 

(9) 

 

in which t is the thickness of the plate, and  is the shear stress, which is essentially uniform 

through the thickness of the plates. The distribution of torsional shear stress is demonstrated for a 

tub girder in Figure 2. 

 

q

q


q=  t

 
Figure 2  Shear Flow in Tub Girder Due to Saint-Venant Torsion 

 

Although the torsional warping stresses in the box or tub girder are usually negligible, significant 

warping stresses due to the cross-sectional distortion of tub girders may develop, as is discussed 

later in this module.  The large torsional stiffness of box or tub sections in bridges is the result of 

the closed cross section once the concrete deck cures.  During construction of tub girders, the 

steel girder is an open section and requires bracing to be designed by the engineer that will 

stiffen the tub girder.  The bracing systems for tub girders are covered later in the module.   
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1.2 Lateral Torsional Buckling 

 

The overall stability of the girder system can be improved by either altering the geometry of the 

individual girders or by providing braces to reduce the unsupported length of the girders.  

Providing bracing is usually the more efficient solution and there are a variety of bracing systems 

that are provided as is discussed later in this module.  The elastic buckling solution for doubly-

symmetric beams is given in the following solution derived by Timoshenko [3]:  

 

 
wy
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cr CI
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    (10) 

 

where, Lb is the unbraced length, and the other terms are as defined above.  The first term under 

the radical in Eq. 10 relates to the St. Venant torsional stiffness, while the second term within the 

radical reflects the warping stiffness of the beam.  Equation 10 was derived for the case of 

uniform moment loading.  Most design specifications make use of solutions derived for uniform 

moment and then use a moment gradient factor (Cb) applied to the uniform moment solution to 

account for the benefits of variable moment.  In the derivation of the buckling expression, 

Timoshenko assumed that the ends of the sections were restrained from twist.  Although restraint 

against lateral translation of the section was stated in the original derivation, the assumed support 

condition was never applied or required to derive the expression.  Therefore, effective bracing of 

beams can be achieved by restraining twist of the section, which is the primary means of bracing 

I-shaped members in bridges with the use of cross frames or diaphragms.  Twist of the section 

can also be restrained by preventing lateral translation of the compression flange of the section, 

which therefore introduces another means of bracing.  Both lateral and torsional bracing 

requirements are discussed later in this module.   

 

Lateral torsional buckling of closed box girders is not typically a concern due to the extremely 

large torsional stiffness of the closed cross section.  During construction of tub girders a quasi-

closed section is typically created by using bracing that simulates the stiffness of a top plate.  

Global buckling failures of tub girder sections have occurred during construction when proper 

bracing was not provided [4]. 

 

1.3 Categories of Bracing 

 

Bracing systems that are used to increase the stability of structural systems can be divided into 

the four categories represented in Figure 3.  This section introduces the basic bracing categories, 

which are covered in more detail in the remainder of this module.  Although the focus of this 

document is on bracing for the super-structure elements of steel bridges, the basic categories also 

apply to columns and frames, which is demonstrated in Figure 3.  Diagonal bracing such as that 

depicted in Figure 3a fits into the category of relative bracing since the braces control the relative 

movement of two adjacent points at different lengths along the main members.  The lateral 

trusses that are used to create quasi-closed tub girders and the bottom flange bracing on I-girder 

systems to improve the lateral stiffness fit into the category of relative bracing.  Another very 

common type of bracing in steel bridges are nodal systems such as those depicted in Figure 3b.  

Nodal braces control the deformation of a single point along the length of the member.  Cross 
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frames or plate diaphragms that frame between adjacent girders fit into the category of nodal 

torsional bracing since the cross frames restrain girder twist at a single location.  The unbraced 

length of the girders is defined as the spacing between adjacent nodal braces.  The lean-on 

bracing concepts such as those depicted in Figure 3c are commonly used in framed structures 

where lightly loaded members can provide bracing to other heavily loaded members by 

providing struts to connect the main members.  The heavier loaded members lean on the other 

members for stability.  The lean-on concepts also work by providing bracing between one set of 

girders and then leaning several girders on a single brace.  The last category of bracing is 

continuous bracing in which the bracing is connected along the entire length of the main 

members.  One form of continuous bracing is the concrete deck that is often connected to the 

girder top flange through the welded shear studs.  The slab provides both continuous lateral and 

torsional restraint to the girders.  In typical bridge design, the lateral restraint provided by the 

concrete deck is taken into account; but the torsional restraint offered by the deck is ignored.   

 

Some bracing systems may fit into multiple categories; however the bracing design is usually 

based upon selecting one design concept for a specific category.  The design philosophies for the 

different categories are covered in more detail in the remainder of this module.  The bracing 

behavior for I-shaped girders is discussed first followed by the behavior for tub girders.   

 

a) relative

comp
flange

b) discrete

brace

cross
frames

diaphragms

c) continuous d) lean-on

siding attached
to columns

metal
deck

girder

column

A B

B A

1

1

BA

 
 

Figure 3  Categories of Bracing 
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2.0 BRACING OF I-GIRDERS 

 

Bracing in steel bridges serves the dual purpose of providing overall stability of the girders as 

well as directly increasing the stiffness and strength of the system. Typically, bridge girders are 

braced by cross frames or full depth diaphragms, while lateral bracing is typically used when it is 

necessary to resist larger lateral loads and limit lateral deflections during construction.  In 

addition to resisting lateral and/or torsional loads, the cross frame type bracing also aids in 

distributing gravity loads in the structure.  Additionally, from a stability perspective, effective 

bracing must have sufficient stiffness and strength.  Therefore, in subsequent discussions of 

stability bracing both stiffness and strength requirements are outlined.   

 

Most reported failures of I-girder bridges occur during the construction stage prior to the 

hardening of the bridge deck.  Except for lifting problems with curved girders, the majority of 

construction failures can be traced to bracing issues.  The collapse of the partially erected State 

Highway 69 plate girder bridge over the Tennessee River on May 16, 1995 shown in Figure 4  

illustrates the importance of properly designed bracing.  In this case, the three 14 ft. deep plate 

girders with a main span of 525 ft had been successfully in place for a few days.  There was a 

substantial bottom flange relative lateral bracing system (a lateral truss) to help resist wind and 

other lateral forces.  There was no top flange relative lateral system provided because the bridge 

deck performs that function after the concrete hardens.  Cross frames with double angle members 

in a K-frame configuration between girders were specified to stabilize the top flange of the 

girders, with the highest flange stresses occurring during the planned deck pour.  To facilitate 

erection of the third girder, during the successful lifting operation the contractor had only a few 

of the cross frames in place to support just the dead weight of the girders.  During the process of 

installing the missing cross frames of the third erected girder, one of the previously erected cross 

frames was removed because an angle member had sustained some damage.  With the cross 

frame removed, the unbraced length of the top flange was too large to support the dead weight of 

the steel and the girder buckled leading to a total collapse of the bridge as shown in Figure 4. 

 

 
 

Figure 4  Collapse of a Bridge over the Tennessee River due to Insufficient Bracing 
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Bracing systems for I-girders may consist of combinations of cross frames, solid diaphragms, as 

well as top and/or bottom flange lateral truss systems.  In this module the term cross frame will 

generally be used to also represent solid diaphragms since their functions are similar.  For 

straight girders the bracing system design is typically dominated by stability and skew issues.  In 

horizontally curved girders, the effects of torsion and lateral flange bending generally control the 

bracing design.   

 

This section discusses bracing on two levels: 1) Bracing needed to transfer loads within a bridge 

system, and 2) Bracing required to provide stability to the bridge system.  In the following 

subsections, the design requirements and geometric arrangements for bracing systems affected 

by torsion, stability and skew are presented. Sections 2.1 and 2.2 provide general design 

requirements necessary to properly transfer the static and transient loads within a bridge system.  

Section 2.3 provides details for the computations associated with determining the stability 

requirements of a given bridge system.  Also discussed within this section are the effects that 

support skew has on bracing systems, the use of lean-on and staggered bracing, system buckling 

of interconnected girders, lateral bracing systems, and continuous bracing systems. 

 

The details and equations provided in Section 2.3 can be used to determine the stability bracing 

forces.  These equations and methods are usually sufficient for typical I-girder bridges, including 

straight, curved, and skewed bridges.  Using these equations the stability bracing forces are 

additive to the bracing forces resulting from a first-order type of analysis (dead load, live load, 

etc.).  For more complex bridges, or as alterative to using the equations discussed in Section 2.3, 

a large displacement analysis can be used to determine the bracing forces.  In this type of 

analysis, the bracing forces will include the bracing forces required to transfer loads within the 

bridge system and the bracing forces required for stability.  When a large displacement analysis 

is used, the effects of imperfections must be considered in order to achieve the desired analysis 

results.  Furthermore, the equations provided in Section 2.3 will generally yield conservative 

bracing forces, as compared to those that result from a large displacement analysis. 

 

2.1 General Requirements 

 

For I-girder bridge systems the most common bracing is a discrete torsional system consisting of 

cross frames with a K- or X-configuration.  Solid plate or channel diaphragms are also used.  The 

braces are usually fabricated from angles or of solid diaphragms constructed with channel-type 

sections for ease in attachment to girder stiffeners. In addition, top or bottom lateral truss bracing 

(a relative brace system) may be needed as temporary bracing during construction or permanent 

bracing to mainly resist wind loads. The requirements given below for cross frames and lateral 

flange bracing are generally taken from AASHTO [1]. 

 

2.1.1 Cross Frame Spacing and Proportions 

 

Cross frames are necessary at all supports of straight and curved I-girder bridges to transfer 

lateral loads from the superstructure to the bearings, to provide no-twist boundary conditions for 

lateral buckling evaluation and transmit torsional overturning and uplift forces to the foundation.  

For straight girders, previous bridge specifications required that intermediate cross frames be 

spaced at no more than 25 feet.  Since the first publication of the AASHTO LRFD Bridge Design 
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Specification in 1994, this requirement has been replaced with the statement that the cross-frame 

spacing should be determined by a rational analysis [1].  The elimination of the specified 

maximum spacing for straight girders is intended to result in a reduction in the number of 

fatigue-prone attachments.  However, States may have their own requirements and preferred 

practices regarding cross-frame spacing that may supersede the AASHTO LRFD Bridge Design 

Specifications. 

 

To determine the spacing of intermediate cross-frames, at a minimum, a rational analysis should 

consider the following: 

 The need for cross frames during all stages of the assumed construction staging, as well 

as in the final condition. 

 Lateral support to bottom flange for deck overhang construction brackets. 

 Sufficient transfer of lateral wind loads from the bottom of the girder to the deck. 

 Stability of the bottom flange for loads producing compression in the bottom flange. 

 Stability of the top flange for loads producing compression, especially during the 

construction stage or for non-composite systems. 

 Control of flange lateral bending effects. 

 Distribution of vertical dead and live loads applied to the structure. 

 

Typically, cross frames play a more active role in horizontally curved steel girder bridges 

compared to straight girder bridges without significant skew. Curved girders are subjected to 

combined bending and torsion. Without cross frames, the flanges of the I-section would have to 

be prohibitively large to control the flange lateral bending stresses (warping normal stresses) that 

are combined with the ordinary bending stresses. Cross frames allow the girders to work together 

as a system to resist the torsion on the curved bridge and they limit the lateral bending stresses by 

supplying torsional supports along the span.  Therefore, cross-frame members in curved bridges 

are considered primary members, and should be designed for forces computed by appropriate 

analysis methods (see Section 2.2). 

 

In curved I-girder bridges, the cross frames should be orientated in a radial manner throughout 

the span, whenever possible (In curved and skewed bridges, cross frames at the supports may be 

placed along the skew or in a radial manner, and are often orientated in a radial manner within 

the span.) The spacing of the cross frames, Lb, must control lateral buckling of the compression 

flange and limit the magnitude of the flange lateral bending stresses.  Davidson et al. [5] 

developed an equation for the spacing required to limit the flange lateral bending stresses to a 

specified percentage of the ordinary flange bending stress. However, AASHTO specifies a 

maximum Lb limit as shown in the following expression:  

 

ft 30
0.7F

E
r π0.1RL

y

tb         (11) 

 

where R is the radius of curvature and rt is the radius of gyration for lateral buckling. The 

reasoning for these limits is given in the Behavior module (Section 5.3.7).  
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For straight girders with skewed supports, the relative displacement of the two ends of a cross 

frame or diaphragm system can introduce significant live load forces into stiff bracing systems, 

especially near supports.  These displacement forces can cause fatigue issues at connections.  

The skew also affects the stability brace stiffness and strength requirements. Where the supports 

are not skewed more than 20 degrees, intermediate diaphragms are typically placed in contiguous 

skewed lines parallel to the skewed supports.  Where the supports are skewed more than 20 

degrees, cross-frames are typically placed perpendicular to the girders on contiguous or 

discontinuous lines.  In cases where supports are skewed more than 20 degrees, it may be 

advantageous to place cross-frames in discontinuous lines in an effort to reduce the transverse 

stiffness of the bridge, particularly near interior supports.  Placing the cross-frames in 

discontinuous lines can decrease cross frame forces, but increase flange lateral bending effects 

(see Sections 2.3.2 and 2.3.3).  

 

Diaphragms and cross-frames for rolled beams and plate girders should be as deep as practicable, 

but as a minimum should be at least 0.5 times the beam depth for rolled beams and 0.75 times 

the girder depth for plate girders.  Cross frames should contain diagonals and top and bottom 

chords even if analysis shows that a chord force is zero. The flexural stiffness of a cross frame 

without a top or bottom chord is substantially reduced and may become ineffective as a stability 

brace. Several orientations are possible for a cross-frame, such as an X-shape with top and 

bottom chords, and K-shape where the diagonals intersect the bottom chord, or a K-shape where 

the diagonals intersect the top chord.  Cross-frame truss assemblies are preferably field delivered 

as a single unit rather than individual pieces for erection efficiency as well as assisting the 

erector with girder alignment.  Efficient cross frames are typically as deep as practical so that the 

diagonals of the cross frame have large enough angles to prevent the gusset-type plates at the 

ends of the cross frame from becoming too large.  For cases requiring relatively shallow cross 

frames, the diagonals of X-systems may be subjected to large axial forces with large unbraced 

lengths.  In these cases, K-frame systems should be considered.   

 

2.1.2 Top and Bottom Flange Lateral Systems 

 

In steel I-girder bridges, the need for lateral bracing should be investigated for all stages of 

construction, and the final condition.  Lateral bracing may be required to resist lateral forces 

from wind and during construction, when the deck is not in place.  When lateral bracing is 

required, it should be placed either in or near the plane of the flange being braced. Connecting 

the lateral bracing directly to the flange with a bolted connection (with or without a connection 

plate) is a preferred practice, as it eliminates the need for connection elements on the girder web 

that can be sensitive to fatigue issues.  In addition, connecting directly to the flange provides a 

direct load path that improves the structural efficiency. 

 

To help prevent lateral movement of the structural system during construction, especially in 

spans greater than 250 feet, it may be desirable to consider providing either temporary or 

permanent flange level lateral bracing.  Flange level lateral bracing may also be needed in deck 

replacement projects on long span bridges.  In the final condition, the concrete deck can typically 

resist lateral wind loads and prevent significant horizontal movement of the structure.  However, 

if the deck requires replacement and is removed, lateral deflections due to wind can be excessive 

in long span bridges without lateral bracing.  The large lateral flexibility may make the 
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construction workers uncomfortable or can result in system instability.  Essentially, a lateral 

bracing system will stiffen a non-composite structure significantly, as compared to one without 

any lateral bracing. 

 

As noted above, top flange level lateral bracing is preferred.  When located in the same plane as 

the top flange, the bracing is near the neutral axis of the final composite structure.  As such, the 

bracing located at the top flange will not be subjected to significant live load forces in the final 

condition.  In general, forces during construction related to wind and dead load will govern the 

design of top flange level lateral bracing.  If top flange lateral bracing is subjected to live load 

forces in the finished structure, fatigue aspects of the detailing should be considered. Also, when 

top flange lateral bracing is connected directly to the top flange, the deck formwork needs to be 

detailed to avoid interference with the bracing members. For straight simply-supported girders, a 

top lateral may be more advantageous than intermediate cross frames, especially for aesthetic 

purposes. 

 

Bottom lateral bracing can provide a similar function as top lateral bracing, but the lateral trusses 

can experience large forces induced by vertical bending of the I-girders, similar to those reported 

in tub girders by Fan and Helwig [7].  These live load forces that result from the vertical bending 

need to be considered by the designer.  In I-girder bridges, bottom lateral bracing creates a 

pseudo-closed section formed by the I-girders connected with bracing and the concrete deck.  In 

curved bridges where torsion is always present, the lateral truss will contribute significantly to 

the torsional stiffness of the bridge system.  In addition to significant bottom flange level bracing 

forces caused by the torsion and pseudo-box effects, cross-frame forces will also be larger as the 

cross-frames act to retain the shape of the pseudo-box section. 

 

2.2 Cross-Frame Forces in Horizontally Curved Girders 

 

Cross frames are primary members in horizontally curved I-girder bridges. The cross-frame 

forces from bending and torsion in all phases of construction and loading can be determined 

directly from a first-order structural analysis of the bridge system. (Here, first-order structural 

analysis refers to a typical design analysis for static and transient loads.) Guidelines for proper 

modeling of the cross frames in 3D-FEA or grid analyses are described in the Structural Analysis 

module of this handbook and in the AASHTO/NSBA [8]. The availability of computer programs 

to determine the forces during erection and staged deck pours is improving [9].   Stability brace 

forces can be determined using equations and methods discussed in Section 2.3.  Alternatively, 

brace forces can be determined by a large displacement analysis on straight and curved girders, 

provided the effects of imperfections are considered.  The necessity of including the 

imperfections in the analysis is generally dependent on the degree of horizontal curvature.  If a 

first order analysis is used, stability brace force requirements (discussed later in this section) 

should be added to the forces resulting from the first-order structural analysis of the curved 

system. For straight and mildly-curved girders (radius approximately greater than 1200 feet), 

stability forces will typically dominate.  Initial imperfections are not important for girders with 

significant curvature.   

 

Cross-frame forces can be determined directly from 3D analysis methods, and somewhat directly 

from 2D analysis methods.   Cross-frame forces can also be determined by the approximate V-
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load method mentioned in the Structural Analysis module.  The development of the V-load 

method is documented by Peollet [10].  The lateral flange bending curvature effects are 

approximated by applying equal and opposite lateral loads, q = M/Rho, to each flange of an 

equivalent length straight girder where R is the radius of curvature of the bridge. M is the girder 

moment due to gravity loading and also vertical V- loads that are equivalent to the overturning 

torsional moment in the curved system. The cross frames provide lateral support to each flange 

with equal and opposite reactive forces qLb, where Lb is the spacing of the cross frames. The 

distribution of the cross-frame end moments and shears across a transverse section of the bridge 

is determined by equilibrium considerations only. The distribution of cross-frame end moments 

and shears have been conveniently summarized by Liu and Magliola [11] for systems ranging 

from 2-girder to 8-girder bridges. Design examples applying the V-load method are available 

[10, 12]. The V-load method cannot be used if there is a flange lateral truss system present, as 

the lateral truss resists the lateral flange bending effects and thus the V-load method will yield 

inaccurate results. [13]. Other potential cross-frame forces from stability requirements, wind, 

overhang brackets and other lateral loads should be added algebraically to the cross-frame forces 

determined via the various analysis methods. 

 

In relatively flexible systems, second order effects can be significant.  For example, curved I-

girders with flange to depth ratios (bf/D) near the AASHTO limit of 1/6 [1] will be relatively 

flexible and are likely to experience significant second order effects, particularly during erection 

when the full bracing is not yet installed.  Research on curved girders by Stith et al. [14] found 

that proportioning girders with bf/D ratios of approximately 1/4 or greater significantly reduces 

second order deformations.  In these cases, cross frame forces due to horizontal curvature often 

can be predicted from a first-order structural analysis of the curved system with sufficient 

accuracy.  These forces can be determined directly using commercial structural analysis 

programs or by using the approximate V-load method.   

 

2.3 Stability Bracing of I-Girders 
 

For bridges with straight I-shaped girders, some type of bracing systems will most likely be 

necessary to control lateral buckling of the compression flange(s) during construction.  For short 

or single spans where live load stresses dominate the design, consideration should be given to 

use a section that can support the deck pour without bracing.  While the bridge girders may be 

heavier than a design with cross frames or other bracing systems, the final cost may be less 

(minimum weight is not minimum cost.)  Short straight bridges without diaphragms or cross 

frames will also have less inspection and maintenance costs.  Furthermore, it should be noted 

that the inflection point should not be considered as a brace point, in accordance with Article 

C6.10.8.2.3 of the AASHTO LRFD Specifications [1].   

 

This section provides a discussion of design recommendations for torsional and lateral bracing, 

related to the required stiffness of the various bracing components.  While engineers historically 

have not typically performed these calculations, they are provided so that engineers can ensure 

that the stiffness provided by the cross-frame and connection details are sufficient.  The details 

and equations provided this section and subsections can be used to determine the stability 

bracing forces.  Using these equations the stability bracing forces are additive to the bracing 

forces resulting from a first-order type of analysis (dead load, live load, etc.).  For more complex 
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bridges, or as an alternative to using the equations discussed in Section 2.3, a large displacement 

analysis can be used to determine the bracing forces.   

 

Guidance on the practical implementation of stability bracing forces in bridge design are 

provided in the Pennsylvania Department of Transportation’s Bridge Design Standard Drawing 

BD-619M [15].  BD-619M provides design guidance on combining the stability bracing forces 

with first-order analysis bracing forces in the context of AASHTO LRFD limit state load 

combinations. 

 

For continuous straight spans, bottom flange compression will generally require cross frames, 

diaphragms, or a bottom flange diagonal system.  In composite construction the hardened deck 

prevents the top flange from twisting and lateral movement and also provides a bracing effect to 

the bottom flange if web distortion is considered.  For rolled sections, web distortion is not a 

significant issue because the web slenderness ratio is low (d/tw < 60) so lateral buckling of the 

bottom flange does not have to be checked for live load [17].   

 

For plate girders with stiffeners designed to control web distortion that are in contact with or 

welded to the top flange, no live load lateral buckling can occur in the negative moment region. 

For unstiffened plate girders in continuous composite construction, web distortional buckling as 

shown in Figure 5 occurs along the bottom flange, not lateral buckling.  Span length is not a 

significant variable for distortional buckling so the classical lateral buckling moment given by 

Eq. 10 does not apply.  The web distortional buckling moment, MTB, for unstiffened bridge 

girders in negative moment regions can be conservatively predicted by the following formulas 

[17]: 
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where tw is the web thickness, MCL is the moment at midspan and MEND is the end moment. 

Moments have a negative sign for compression in the bottom flange.  If Eq. (14) is not satisfied 

(MEND > MTB ), a cross frame or stiffener will be required in the negative moment region.  

However, the practice of considering only the transverse stiffeners and web distortion as 

discussed above is not a common practice in bridge engineering, and may only be suitable for 

special conditions that may arise while the bridge is in service.  For example, a bridge in service 

could be hit by an over height vehicle and the cross frames could be damaged.  In this case, it 

may be necessary to remove the cross frame and determine the buckling strength without the 

cross frame, and in accordance with the above equations. 
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Figure 5  Web Distortion 

 

 

 
Figure 6  Restraining Forces 

 

Stability bracing of beams is provided by lateral (L), torsional (T) and warping (W) restraints 

as shown in Figure 6.  Any one of these restraints alone can increase stability of the compression 

flange. Relative, nodal and lean-on systems as described earlier provide lateral and/or torsional 

restraint to single girders. Warping restraint is present only in continuous bracing systems.  

Lateral and warping restraints control the lateral movement of the flange to which they are 

attached. Lateral bracing must be connected to both flanges near inflection points.  When 

warping restraints such as pipe stiffeners are used, the stiffener must be connected to the top and 

bottom flanges.  On the other hand torsional braces (diaphragms or cross frames) prevent twist of 

the cross section at the brace location so they do not need to be attached to the compression 

flange to be effective [18].  

 

Permanent metal deck forms (PMDF) that act as shear diaphragms and are attached directly to 

the top flange of a girder can also improve the lateral stability. Such systems provide mainly 

warping restraint to the top flange rather than lateral or torsional restraint.  Stiffness and strength 

design recommendations for PMDF-braced beams are given elsewhere [19].  The diaphragm 

strength requirement, which is limited by the fastener capacity, generally controls the design.  

 

Top or bottom flange lateral bracing in I-girder bridges is relative or lean-on; torsional bracing is 

nodal, continuous or lean-on.  If two adjacent beams are interconnected by a properly designed 

cross frame or diaphragm at midspan, that point can be considered a torsionally-braced point 

when evaluating the beam buckling strength.  Since the beams can move laterally at midspan, the 
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effectiveness of such a torsional bracing system is sometimes questioned.  As long as the two 

flanges move laterally the same amount, there will be no twist.  If twist is prevented, the beam 

can be treated as braced at that point.  Tests and theory confirm this approach [20, 21]. 

 

A general discussion of beam lateral and torsional bracing and the development of the design 

recommendations with design examples for bridge girders are presented elsewhere [18]. The 

design recommendations for torsional and lateral bracing given in Sections 2.3.1 and 2.3.5 have 

been adopted by the AISC Specification. The Commentary on the AISC Specification should be 

consulted for discussion on implementing the stability bracing requirements.  The provisions are 

limited to doubly- and singly-symmetric members loaded in the plane of the web.  Beam loads 

are assumed to be applied at the top flange, which is typical in bridges. Stability braces must 

have sufficient stiffness and strength to be effective.  

 

2.3.1 Torsional Bracing Design Requirements, T 

 

The most common form of bracing in steel bridge systems are cross frames or diaphragms that 

restrain the twist of the girders and are thereby typically classified as torsional braces.  Concrete 

bridge decks in composite systems also provide torsional resistance to the girders.  As noted 

earlier, effective stability bracing must possess sufficient stiffness and strength.  The strength and 

stiffness requirements for torsional bracing from the AISC Specification [16]: 
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where  = 0.75, Mf is the maximum moment within the span, Ieff = Iyc + (t/c) Iyt, t and c are as 

defined in Figure 7, L is the  span length, Lb is the unbraced length, n is the  number of span 

braces, ho is the distance between flange centroids and Cbb is the moment modification factor for 

the full bracing condition. For a singly-symmetric section Iyc and Iyt are the out-of-plane 

moments of inertia of the compression and tension flanges, respectively.  If the cross section is 

doubly symmetric, Ieff becomes Iy.  All torsional bracing (nodal and continuous) use the same 

basic design formulas. T and 
T

 are defined as the torsional stiffnesses of the nodal and 

continuous bracing systems, respectively. Mbr is the moment to be resisted by the nodal torsional 

brace (for continuous bracing Lb/ n=1). For cross frames the moment is converted to chord 

forces, Fbr, by dividing by hb, the distance between the chords. When the values of the variables 

in the two unbraced segments adjacent to a nodal brace are different, the brace can be designed 

for the average of values of the strength and stiffness determined for both segments. It is 

conservative to use Cbb = 1.0.  
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Figure 7  Bending Stresses in Singly Symmetric Section 

 

In the development of the design recommendations outlined in this section, Yura et al. [21] 

extended the work of Taylor and Ojalvo [22] and showed that a torsional brace is equally 

effective if it is attached near the tension flange or the compression flange.  A moment diagram 

with compression in both flanges (reverse curvature) does not significantly alter the torsional 

brace requirements.  On the other hand, the stiffness of a torsional brace system T is greatly 

affected by web cross-section distortion at the brace point, as illustrated in Figure 5, and by the 

in-plane stiffness of the girders and is given by: 

  

gbT 

1111
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      (15) 

 

where b is the attached brace stiffness, sec is the distortional web stiffness and g is the in-plane 

girder system stiffness (see Section 2.3.4).  The effective T is always less than the smallest of b, 

sec and g. Brace member sizes that satisfy the torsional brace stiffness and strength criteria are 

usually small but connection details must be carefully considered to control distortion. 

 

2.3.2 Stiffness of Cross Frame and Diaphragm Systems b 

 

The b of some common torsional brace systems are given in Figure 8 and Figure 9.  The choice 

between the two diaphragm cases shown in Figure 8 depends on the deck details.  If the distance 

between the flanges of adjacent girders is maintained constant by the attachment of decking in 

addition to the diaphragm, then all the girders must sway in the same direction and the diaphragm 

stiffness is 6EIb/S.  On the other hand, if adjacent flanges can separate as shown for the through 

girders, then the diaphragm stiffness will be 2EIb/S. For regions of the girders with the top flange 

in compression, placing a diaphragm above midheight will typically cause the two compression 

flanges to displace laterally in the same direction bending the diaphragm in reverse curvature and 

resulting in stiffness of 6EIb/S.  Values of the torsional bracing stiffness shown in Figure 9 assume 

that the connection between the girder and the brace can support a bracing moment Mbr.  Elastic 

truss analyses were used to derive the stiffness of the cross frame systems shown in Figure 9.  If 

the diagonals of an X-system are designed for tension only, then horizontal members are required 

in the system.  Although the top chord of the K-brace system has zero force, a top strut is still 
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recommended to link the top girder flanges together (to ensure the development of the stiffness 

6EIb/S).   
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Figure 8  Diaphragm Stiffness, b 
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Figure 9  Stiffness Formulas for Twin Girder Cross Frames [21] 

 

2.3.3 Web Distortional Stiffness, sec 

 

In Figure 5, the top flange is prevented from twisting by the bridge deck but web distortion may 

permit a relative displacement between the two flanges.  A stiffener at the brace location as 

shown in Figure 10 can be used to control the distortion. Note that in most bridge applications, 

the stiffener should be full depth to account for potential fatigue issues related to web distortion.  

The design method considers contributions of both the web and a transverse web stiffener.  The 

sec effect on the torsional brace system stiffness, related to the out-of-plane bending stiffness of 

the web plus any web stiffening, is given by the following expression: 
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Figure 10  Web Stiffener Geometry 

 

 

 

 

 

 

  3 3

sec

1.5
3.3

12 12

o w s s

o

h tE t b
  

h



   

   (16) 
 

where tw is the thickness of web, ts is the thickness of stiffener and bs is the total width of the 

stiffener(s) on either side of the web as shown in Figure 10.  The two terms within the parenthesis 

are the moments of inertia of the web, with an effective width of 1.5ho, and the stiffener. For 

continuous bracing use a unit width instead of (1.5ho) in Eq. (16) and the torsional brace stiffness 

per unit length ( bβ ) in place of b in Eq. (15) to determine required continuous brace system 

stiffness, Tβ . Equation (16) is similar to the expression for bending stiffness of a member with 

the far end pinned, 3EI/L. For rolled sections, Figure 11 shows some of the geometrical decisions 

on the layout that need to be made in detailing cross frames. 

 

  

  

  
  

  

  

  

   

  

  

  

  

  

  

  

  

 

Figure 11  Cross frame and Diaphragm Geometry 

 

The detailing can significantly affect the stiffness of the bracing system.  The portion of the web 

along the depth of the brace (within the brace depth, hb) will not affect the stiffness of the brace 

since that portion of the web cannot distort.  Although a continuous stiffener (connection plate) is 

typically provided for a cross frame, that portion is not shown in Figure 11 since the web cannot 

distort in that region.    Diaphragms are usually W shapes or channel sections connected to the 

girder web through stiffeners.  When stiffeners are needed to control distortion, the stiffener size 

that gives the desired stiffness can be determined from Eq. (16). For rolled sections the stiffener 

must extend over three quarters of the web depth.  AASHTO requires the diaphragm or cross 
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frame to extend at least ¾ of the depth; however with adequate web stiffening effective bracing 

can be achieved with smaller depth braces.  For example, in through girder systems the floor 

beams are relatively shallow compared to the girders.  With proper web stiffening, the floor 

beams provide good torsional restraint to the girders.  For built-up members that have more 

slender webs than rolled sections, full-depth stiffeners can be cut short of both flanges no more 

than 6tw, except when hardened concrete bridge decks are used as torsional bracing to stabilize 

the negative moment region in continuous construction. In this case the stiffeners must be in 

contact with the top flange. 

 

For partial depth stiffening details as illustrated in Figure 11, the web is broken up into segments 

that depend on the stiffening conditions.  For example, considering the section depicted in Figure 

11, the web can be divided into an unstiffened compression region (c), an unstiffened tension 

region (t), a stiffened region above the brace (s), and a stiffened region below the brace (u).  The 

stiffness values of the various portions of the web, hi =hc, hs. ht and hu, are evaluated separately by:  
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where ts is the thickness of the stiffener or connection plate and 1/ sec = (1/ i).  For continuous 

bracing, replace 1.5h with a unit width and neglect the ts term if there is no stiffener at that 

location. The portion of the web within hb can be considered infinitely stiff.  For cross frames, bs 

should be taken as infinity; only ht and hc will affect distortion.  The unstiffened depths, hc and ht, 

are measured from the flange centroids.  The depth of the diaphragm, hb, can be less than one-half 

the girder depth yet provide the required stiffness. Cross frames with gusset connections as shown 

in Figure 11, should be detailed so that (hc + ht) ≤  ho/4 to reduce the effects of distortion. 

 

The diaphragm does not have to be located close to the compression flange. As noted above, the 

location of the diaphragm may affect the brace stiffness (2EIb/S vs. 6EIb/S ); however for a given 

brace stiffness value, the location of a diaphragm or cross frame on the cross section is not very 

important. The most effective cross-section location for diaphragm/cross frames to minimize 

distortion and stiffener sizes is centered about the beam midheight.   

 

2.3.4 In-Plane Stiffness of Girders, g 

 

In cross frames and diaphragms the brace moments Mbr are reacted by vertical forces on the main 

girders as shown in Figure 12.  The vertical couple causes a differential displacement in adjacent 

girders that reduces the torsional stiffness of the cross-frame system. These forces increase some 

main girder moments and decrease others and cause a relative vertical displacement between 

adjacent girders.  The effect is greater for the two linked “twin girder” systems shown in Figure 

12B compared to the fully interconnected system depicted in Figure 12A.  For a brace only at 

midspan in a multi-girder system, the contribution of the in-plane girder flexibility to the brace 

system stiffness is [21]: 
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where Ix is the strong axis moment of inertia of one girder, ng is the number of girders connected 

by the cross frames, and L is the span length.  As the number of girders increase, the effect of 

girder stiffness will be less significant.  For example, in a two-girder system the term 24(ng-1)
2
/ng 

is 12 while for a six-girder system the factor becomes 100.  Helwig et al. [23] showed that for twin 

girders the strong axis stiffness factor g is significant and Eq. (18) can be used even when there is 

more than one brace along the span. If g dominates the torsional brace stiffness in Eq. (15), then a 

system mode of buckling that is discussed later in this section is possible.   
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Figure 12  Beam Load from Braces 

 

2.3.5 Connection Stiffness, conn 

 

The diaphragm and cross-frame stiffnesses given in Figure 8 and Figure 9 assume that the 

attachment connections are not flexible.  Clip angles welded only along the toe and tee stubs with 

bolted flanges will flex when tension is applied to the outstanding leg or tee stem. This flexibility, 

conn, will reduce the system stiffness.  If partially restrained connections are used, the flexibility of 

the two connections should also be included in determining the system stiffness by adding the 

term, 2/conn, to the right side of Eq. (15). Field studies [24] have reported a reduction of 40-70% in 

the stiffness of the non-permanent external cross frames between tub girders due to tee stub flange 

flexibility.     

 

The brace force design requirements are directly proportional to the magnitude of the initial out-of-

straightness of the girders [25]. The brace force design requirements above are based on an out-of-

straightness of 0.002L. If oversize holes are used in the bracing details, the brace forces will be 

increased if slip occurs in the connection. This can be considered in design by adjusting the 

 



 22 

magnitude of the lateral and torsional brace force requirements by the modification factor, (1 + 

oversize / (Lb/500)). 

 

2.4 Effects of Support Skew 

 

Due to geometric requirements with either intersecting roadways or the terrain of the job site, the 

support lines of bridge systems often must be offset as depicted in the plan view in Figure 13.  

 

 
 

Figure 13  Plan View of Bridge with Skewed Supports 

 

Since skew angles increase the interaction between the steel girders and the braces, the behavior 

of bridges with skewed supports becomes more complicated than that in bridges with normal 

supports.  The interaction between the girders and braces often results in large live load forces in 

the cross-frames or diaphragms, which can lead to fatigue problems around the brace locations.  

The severity of the fatigue problem is dependent on the details that are used for the bracing.  

Figure 14 illustrates the two different orientations of braces for skewed bridges.   
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Figure 14  Brace Orientations for Bridges with Skewed Supports 

 

If the skew angle is less than 20 degrees, AASHTO [1] allows the bracing to be parallel to the 

skew angle.  For skew angles greater than 20 degrees, AASHTO requires the bracing to be 

perpendicular to the longitudinal axis of the girder.  For braces parallel to the supporting 

abutments, points A and B at the ends of the brace will have similar vertical displacements 

during truck live load.  However, when braces are normal to the girder lines, the two ends of the 

braces will have different vertical displacements during truck loading.  This differential vertical 

displacement can result in large brace forces, which can lead to fatigue problems.  Alternative 

bracing layouts to help minimize live load induced forces are to use either lean-on bracing or a 

staggered cross frame layout as discussed in the next section.   

 

When the cross frames are oriented perpendicular to the longitudinal axis of the girders as shown 

in Figure 12(b), the provisions outlined in the previous sections for the stability stiffness and 

strength requirements are directly applicable with no correction required for the skew angle.  The 

braces will develop additional forces due to differential displacement from the skew angle.  For 

skew angles larger than approximately 45 degrees, the forces induced due to the differential 

displacement will be of similar magnitude or even larger than stability induced forces.  During 

construction of the concrete bridge deck, these forces can be predicted with reasonable accuracy 

from a first-order analysis on a relatively simple computer model of the steel girders and bracing 

system.  The forces from such an analysis are additive to the stability forces predicted from Eqn. 

(12) and Figure 9.   

 

When the cross frames are oriented parallel to the skew angle as depicted in Figure 12(a), the 

skew angle has an impact on both the stability stiffness and strength requirements of the bracing.  

Wang and Helwig [26] present expressions for the stiffness and strength requirements of braces 

in bridges with skewed supports.  The required stiffness of the braces is given in the following 

expression: 
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where, b Skew is the stiffness requirement of the skewed brace, b is the required stiffness that 

results from Eq. 13,  and  is the skew angle.  Once the required skewed brace stiffness is 

determined, the stiffness equations given in Figure 9 can be used to size the diagonals and struts 

of the cross frame.  Although s in the stiffness equations is typically thought of as the girder 

spacing, for a skewed brace the value of s should be taken equal to the length of the cross frame 

in the skewed orientation (equal to girder spacing/cos). 

 

The strength requirement of the skewed brace is given in the following expression: 
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where Mbr Skew is the brace moment applied to the skewed brace and Mbr is the required brace 

moment from Eq. (14). 

 

If the cross frame is properly sized for the stiffness and strength requirements considering the 

skewed geometry, there is no technical reason why a cross frame cannot be oriented parallel to 

the skew for angles larger than 20 degrees.  The engineer needs to recognize that the stiffness of 

the cross frame is affected by the skew as a function of the above equations and also that the 

parallel brace can becomes relatively long for larger skew angles.  If the longer geometry is 

considered in the equations the brace will have the proper stiffness and strength.   

 

However, one problematic area with cross frames parallel to the skew angle can be the 

connection details that are used between the brace and the girders.  Many fabricators may use a 

bent plate to make the connection between the brace and the connection plate (web stiffener).  

Such a detail allows the fabricator to utilize a connection plate that is perpendicular the web 

plate; however the bent plate connection can dramatically reduce the effectiveness of the brace 

due to the flexibility introduced by the eccentric connection.  One solution to eliminating the 

bent plate is orienting the connection plate parallel to the skew angle; however such a detail can 

be complicated for larger skew angles.  In addition, fatigue tests on the angled stiffeners showed 

a much lower life compared to perpendicular stiffeners [27].  Although for larger skew angles, 

the intermediate cross lines will typically be oriented perpendicular to the longitudinal axis of the 

girders, at the supports the cross frames are usually parallel to the skew angle.  In these instances, 

the bent plate detail is typically used as shown in Figure 15 for a bridge with nearly a 60 degree 

support skew. 
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Figure 15  Bent Plate Connection Detail Frequently Used in Bridges with Skewed Supports 

 

Although currently not a standard practice, an alternative to the bent plate detail in skewed 

bridges, Quadrato et al. [27] proposed the detail depicted in Figure 16 which shows a plan view 

of an I-shaped girder with a half-pipe stiffener.  The round pipe allows a perpendicular 

connection between the skewed support cross frame and stiffener for any skew angle.  The split 

pipe stiffener serves as both the bearing stiffener and connection plate.  The pipe stiffener 

increases the warping resistance of the girder and thus improves the buckling resistance of the 

girder.  Further information regarding the increase in warping resistance can be found in 

Quadrato et al. [27].  Additionally, with regard to fatigue behavior, analytical and experimental 

research has shown that the pipe stiffener weld detail to the girder flanges is no worse than a 

typical plate stiffener welded to the girder flanges [28].  However, the Engineer needs to be 

aware that currently, the pipe material may not be approved for use in bridges, and may require 

special approval from the Owner.    

 

Half-Pipe 
Stiffener

Cross Frame
 

Figure 16  Half-Pipe Web Stiffener 
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2.5 Lean-On or Staggered Bracing 

 

A common practice in the design of frames is to provide lateral stability by using lightly loaded 

columns to restrain other columns such as the case depicted in Figure 17.   

 

 
 

Figure 17  Summation of P Concept for Sideway Frame Stability   

 

Column A has pins at both ends and therefore has no lateral stiffness.  However the column can 

be laterally stabilized by leaning on Column B, provided that column is designed to possess 

adequate lateral stiffness to support the total frame load.  The figure demonstrates the P concept 

that was presented by Yura [28] in which the frame is laterally stable in the sidesway buckling 

mode provided the sum of the applied load is less than the sum of the sway mode contribution of 

the columns in the plane of the frame.  In the case depicted in Figure 17, Column A contributes 

no lateral stiffness to the frame and therefore Column B must be able to support the entire frame 

load.  However, leaning columns such as Column A, must be able to support their axial force in 

the no-sway mode.   

 

The P concept also applies to beam systems such as the two beams depicted in Figure 18.   

 

 

 

 

 

 

 

 

 

Figure 18  Beams Linked Together at Compression Flange 

 

The beams are simply supported with gravity load that causes compression in the top beam 

flange.  The two beams are connected at the top flange through a shear link that does not restrain 

the flange rotation, but instead causes the two flanges to have essentially the same lateral 

displacement.  The respective loads on the two beams are PA and PB, in which the load on beam 

B is less than the members buckling load.  Beam A can therefore lean on Beam B for stability 

A B

PA PB

PA> PB
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and the P concept, would simply require that the sum of the two applied loads are less than the 

sum of the two beams buckling loads.  The spacing between the shear links must be close enough 

that beam A cannot buckle between the links.   

 

The P concept for beams is demonstrated numerically from the graph shown in Figure 19 [21].   

 
TO

TA
L 

LO
A

D
 P

 (
ki

p
s)

0

1

2

3
Buckling Load

0.5P 0.5P P

W12x14     Span =24 ft.
Initial Deflection = 0.16 in.

LATERAL DEFLECTION (in.)
0 1 2 3 4 5

 
Figure 19  Graph of P Concept for Beams   

 

The graph shows results from a three dimensional finite element analysis, for two beams linked 

together at the top flange.  The buckling load is indicated by the horizontal line in the graph that 

that was determined from a critical load analysis (eigenvalue buckling analysis).  The critical 

load does not reflect the impact of imperfections on the behavior.  The two solid lines represent 

the results from a large displacement analysis on an imperfect system.  The curves approach the 

critical load results (buckling load) at relatively large displacements.  In one of the large 

displacement graph cases the two beams are equally loaded with 0.5P, while in the other case 

only one of the beams was loaded with a load of P.  The graphs show that the total load both 

beam systems can support is approximately 2.5 kips despite extremely different load 

distributions.   

 

The above cases demonstrate the bracing scenario where lightly loaded beams can provide 

bracing to other, more heavily loaded beams.  The lean-on concepts also apply to cases where 

beams can lean on braces such as cross frames or diaphragms.  Cross frames and diaphragms 

represent relatively costly structural components in steel bridges from the perspective of both 

fabrication and erection.  The braces can often be difficult to install in the bridge due to fit-up 

problems and also may attract significant live load forces, particularly in bridges with large 

support skews.  Therefore, minimizing the number of cross frames on the bridge can lead to 

better overall bridge behavior as well as reduced maintenance costs.  The typical practice in steel 

bridge behavior is to place cross frames between each of the girders at a uniform spacing along 

the length of the girders.  Although this practice results in effective braces for providing overall 

stability to the bridge girders, the resulting system is not necessary structurally efficient.  Cross 
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frames and diaphragms fit into the category of torsional braces since they resist twist of the 

girders.  Improved structural efficiency is possible by utilizing lean-on bracing concepts in which 

several girders can be braced across the width of the bridge by a single cross frame.  Lean-on 

bracing systems allow the designer to eliminate cross frames on parts of the bridge where the 

brace is difficult to install or where large forces in the finished bridge may result from truck 

traffic, thereby potentially leading to poor long term fatigue behavior.  In a given bracing line, a 

cross frame may be selectively positioned and 3 or more girders can lean-on that brace as 

depicted in Figure 20.  Girders that lean on the brace require top and bottom struts to control 

girder twist.      

 

Full Cross-Frame

Only Top and Bottom Struts
 

Figure 20  Lean on Cross Frame Bracing   

 

Helwig and Wang [30] developed recommendations for girders with skewed supports so that 

intermediate cross frames (between the supports) can be selectively located to minimize forces 

induced in the cross frames.  For example, the plan view of the bridge in Figure 21 shows a 

possible layout that will reduce the number of cross frames and minimize the live load induced 

forces.   

33.7�

24 ft. 24 ft. 24 ft. 24 ft. 24 ft. 4'

124 ft.

A B C D E

 
 

Figure 21  Plan View of Bridge with Lean-On Cross Frame Bracing   
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In a given cross frame line, the full cross frame is located between the girders that will  place the 

cross frame as far away from the support as possible.  In cross frame lines A and B, this puts the 

cross frame near the top of the figure, while in lines D and E, the braces are near the bottom of 

the plan view.  Near midpsan, at least one full line of cross frames should be provided to link the 

girders together and control differential displacement.  In addition, the cross frame lines near the 

supports (lines A and E) should not frame directly into the support, but instead be offset by 

approximately 4 or 5 feet.  Offsetting the bracing line from the skewed support reduces the 

forces induced in the cross frame, while still producing effective bracing.     

 

In systems with a large number of girders across the width, a contiguous line of cross frames 

near midspan may not be necessary.  Instead the cross frames can be distributed across the width 

of the bridge as shown in Figure 22, which shows a plan view of a two span bridge with a 54 

degree skew.  The bridge was one of three bridges in Lubbock, Texas that was constructed using 

lean-on bracing.  The circled cross frames were cross frames that were necessary to provide 

stability to the partially erected bridge.     
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Figure 22  Lean on Bracing Layout in Bridge with Large Numbers of Girders   

 

Because there are several girders restrained by a single cross frame in lean on systems, the 

individual cross frames need to be sized for the increased demand on the bracing.  Figure 23 [30] 

demonstrates the distribution of forces across the bridge in a cross frame system with lean on 

bracing. 
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Figure 23  Stiffness and Strength Requirements for Lean-On Cross Frames 

 

The cross frame is idealized as a tension-only system.  The expressions in the figure show the 

corresponding stiffness of the cross frame as well as the maximum forces in the struts and 

diagonals of the cross frame.  In most situations, although the forces vary the same size struts 

will be used throughout.   

 

One other modification that is necessary with lean-on bracing is a reduction in the in-plane 

stiffness of girders.  Since the bridge is not fully connected throughout, Helwig and Wang [30] 

recommended that the in-plane stiffness of the girders be reduced by 50% in the brace system 

stiffness calculation.  This leads to the following expression for systems with lean-on bracing: 
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Note that ng in the above cross section is the total number of girders across the width of the 

bridge and should not be confused with ngc in the lean on calculations.   
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Another cross frame configuration that is sometimes utilized in bridges with large support skews 

is the staggered layout depicted in Figure 24.   

 

 
Figure 24  Staggered Cross Frame Layout 

 

In the staggered layout, the cross frames are oriented perpendicular to the longitudinal axis of the 

girders; however the individual cross frames are staggered along a line parallel to the skew angle.  

The advantage of this layout is that the differential deflections of at the ends of the cross frame 

lines are relatively similar since the centers of the individual cross frames are located at 

approximately the same longitudinal location on the bridge.  Therefore the behavior is similar to 

the parallel layout; however perpendicular connections can be used.  The basic stiffness and 

strength expressions for the bracing are essentially the same as outlined for the cross frames 

along contiguous lines.  One of the drawbacks to this layout is that because the adjacent cross 

frames (A and B in Figure 24) that connect to a girder are at different locations along the girder 

length, the connection plates on an individual girder do not line up on the opposing sides of the 

web.   

 

Additionally, a staggered cross-frame arrangement as shown in Figure 24 will result in flange 

lateral bending, as the cross-frame members apply lateral loads to the girder flanges.  In cases of 

smaller bridges or bridges with small skews, the lateral flange bending effects will be less than 

those that result from longer span bridges, or bridges with larger skews.  The differential 

deflections between the adjacent girders where the cross-frames connect play a significant role in 

the cross frame forces and the subsequent flange lateral bending effects. 

 

2.6 System Buckling of Interconnected Girders 

 

Cross frame and diaphragm systems provide bracing by restraining twist of the interconnected 

girders.  The generally accepted belief among designers is that reducing the spacing between 

these braces will improve the buckling capacity of the girder systems.  This belief holds true for 

many applications.  However, there have been a number of applications in which the buckling 

behavior of the girder system can be relatively insensitive to the spacing or size of the braces.  

For example, the two-girder widening shown in Figure 25 had relatively close cross frames, 

however the girder experienced significant twisting during placement of the concrete deck as 

evidenced by the 10 inch lateral deformation of the bottom flange relative to the plumb line.  The 

load on the twin girder system was balanced and did not have an eccentricity.  The mode 

exhibited by the bridge widening is a buckling failure of the entire girder system as described 

below.   
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Figure 25  System Buckling of a Twin Girder Widening, where the system has buckled out 

of plane nearly 10 inches during deck placement 

 

The buckling mode that is typically envisioned in a properly braced girder system is depicted in 

Figure 26a, which shows a plan view of a twin girder system.  By reducing the spacing between 

the braces, the engineer can reduce the size of Lb and thereby improve the buckling capacity of 

the girders that results from lateral-torsional buckling expressions such as Eq. (10).  However in 

girder systems with a relatively large length to width ratio (Lg/s), the controlling mode is the 

buckled shape depicted in Figure 26b.  In the system buckling mode, the girder system behaves 

as a unit and the resulting resistance is not significantly affected by the spacing or size of the 

braces.   
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Figure 26  Comparison of Individual Buckling Mode and System Buckling Mode 

 

Yura et al. [31] presented the following solution for doubly-symmetric girders that can be used to 

evaluate the buckling capacity of a girder in the system buckling mode: 
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(22) 

 

where: s is the girder spacing, Lg is the total length of the girder, E is the modulus of elasticity of 

the steel girder, and Iy, and Ix are the respective moments of inertia of a single girder about weak 

and strong axes.  The expression estimates the capacity of one of the girders for comparison with 

the girder design moment.   

 

For singly-symmetric girders, Iy in Eq. 20 can be replaced with Ieff [31]: 
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(23) 

 

where, Iyc and Iyt are the respective moments of inertia of the compression and tension flanges 

about an axis through the web, and c and t are the respective distances from the centroidal axis to 

the compression and tension flanges.  For a doubly-symmetric section, Ieff given by Eq. (23) 

reduces to Iy since c = t.   
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Equation 20 provides a closed form solution that can be used to evaluate the system buckling 

capacity of twin girder systems.  For a three girder system, replace Iyc in Eq. (23) with 3/2 Iyc, 

and define S in Eq. (22) as 2S, which is the distance between the two exterior girders.  For four 

girders, replace the corresponding values of the Iyc, and S terms with 2Iyc and 3S.  Equation (22) 

shows that for a given girder span (Lg), the system buckling mode can be improved by either 

increasing the stiffness of the individual girders or by increasing the girder spacing.  Alternative 

methods of improving the buckling capacity include adding a top and bottom flange lateral truss 

near the ends of the girders as is discussed later in this module.   

 

2.7 Lateral Bracing Systems 

 

Common bracing systems that may be used in bridges consist of lateral trusses that control the 

relative moment of two points along the girders.  Relative bracing systems generally consist of a 

combination of struts and diagonals as depicted in the plan view shown in Figure 27.  As noted 

in the previous section, the lateral truss type bracing depicted in Figure 27 may be used on the 

bottom flanges of some I-girder systems to enhance the resistance to lateral loads from sources 

such as wind.  As is covered in detail later in this module, these types of lateral trusses are 

extremely important to stiffen tub girders during construction.  The struts are oriented 

perpendicular to the longitudinal axis, while the diagonals connect together two points at 

different lengths along the bridge. The spacing between the two points defines the unbraced 

length.  As the name implies, the bracing system controls the relative movement of the two 

points.  For example, the diagonal and two struts in Figure 27 combine to form a relative bracing 

system.   

 

The stiffness of the lateral bracing is a function of both the strut and the diagonal sizes and the 

bracing can be designed to control the movement of Point C relative to Points A and B.  The 

actual bracing system may vary in terms of the number or orientation of the diagonals.  In some 

cases, two diagonals may be used and the stiffness of the system is dependent on the buckling 

capacity of the diagonals.  A “tension-only” system with two diagonals is sometimes specified 

such that the compression resistance of the diagonal is conservatively neglected since (depending 

on the type of member selected) the buckling resistance may be low.  However, since the lateral 

truss often connects near the top or bottom flange of the girders, the designer needs to be aware 

of forces that can be induced in the bracing due to stresses from vertical bending of the girders.  

These stresses develop due to longitudinal strain compatibility between the bracing system and 

the girder flanges that experience compression or tensile stresses due to girder flexure.  The 

nature of the stress induced in the lateral truss is the same state of stress in the girder where the 

truss is connected.  For example, if the lateral truss is located at the top flange near the midspan 

region, gravity load stresses in the girders will induce compression in the truss.  Generally, if a 

perpendicular cut everywhere along the unbraced length passes through the brace, then the brace 

system is relative.   
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Figure 27  Plan View of Typical Lateral (Relative) Bracing System 

 

Designs that utilize cross framing or X-framing such as the system depicted in Figure 28 are 

typically treated as tension-only systems in which only one of the diagonals is relied upon for 

resisting lateral forces.  The diagonal in compression is conservatively neglected.  Structural 

analysis models should account for the tension-only concept.  There have been cases where 

engineers conducting peer reviews were unaware of the tension-only philosophy used in the 

original design.  As a result the peer reviewer has requested costly retrofits because they claimed 

the designs were inadequate because of an apparent compressive force in one of the diagonals 

that exceeded the buckling capacity of that member.  If one of the diagonals can support the 

entire load in tension, then the design is satisfactory.  

 

 
Figure 28  Effective Length in X-type cross frames 

 

In X-frame systems that rely on the compression strength of the diagonals and are connected at 

the intersection point, the out-of-plane and in-plane compressive strength can be determined 

using an effective length of one-half the total diagonal length as shown in Figure 28.  This is 

contrary to the statement in C6.9.4.4 of AASHTO [1].  In the plane of the X-bracing, geometry 

dictates an unbraced length of L/2.  Out of plane, the tension diagonal provides sufficient bracing 
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to force the compression diagonal into an S-shape at buckling as shown in the Figure 28 photo of 

a test on a U-shaped girder with a top lateral X-system.   

 

The bracing effect of the tension diagonal comes from three potential sources: 1) the magnitude 

of the force in the tension diagonal, 2) the out-of-plane flexural stiffness and 3) catenary action 

[32].  As shown in Figure 29, conservatively placing a hinge in the diagonal at the intersecting 

point, m, and displacing it a distance , equilibrium requires: 
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For most bracing geometries T is greater than or equal to C and  must be zero for equilibrium.   

Thus, the intersection point is a braced point, even if the compression diagonal is discontinuous 

due to the presence of a splice.  It has been shown [33, 34] both theoretically and experimentally 

for T > 0.6C and no compression member splice that the effective length is 0.5L.  These studies 

neglect catenary action of the tension member, which is also effective in providing the necessary 

bracing force at the intersection.  Based upon these contributing factors, the effective length of 

the compression diagonal is always half the length when the two diagonals are connected at the 

intersection.       
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Figure 29  X-Framing Equilibrium 

 

Winter [35] demonstrated that effective stability bracing must satisfy both stiffness and strength 

requirements.  He demonstrated the concept with a simple rigid link model that could be used to 

determine the ideal stiffness requirements of the bracing as well as the impact of imperfections 

on the brace strength requirements.  The bracing requirements for relative bracing based on 

Winter’s approach [35], are:  

 

   Stiffness:  L  = 4 Mf  Cd  / Lbho    (25) 

 

   Strength:  Fbr = 0.008 Mf  Cd  / ho   (26) 

 

where  = 0.75, Mf is the maximum moment within the unbraced length (Lb), ho is the distance 

between flange centroids and the constant Cd = 1.0 for single curvature bending and 2.0 for 

reverse curvature. The flange compressive force is conservatively approximated as Mf /ho.   
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These provisions are applicable for lateral bracing attached near the compression flange (except 

for cantilevers where top flange bracing is more effective).  Braces that are adjacent to an 

inflection point must be attached to both flanges and the stiffness and strength requirements are 

greater as given by the Cd factor.  It should also be noted, that in most I-girder bridges, the design 

of the lateral bracing members will be governed by the applied loads, and not necessarily the 

bracing requirements presented above.  

 

2.8 Continuous Bracing 

 

In a continuous bracing system with sufficient strength and stiffness, compression flange lateral 

buckling cannot occur because of the very close spacing of the connection points. A concrete 

bridge deck attached to the top flange through shear studs is an example of a continuous system.  

The hardened concrete bridge deck has very large in-plane shear stiffness and bending stiffness 

that effectively prevents top flange twist and lateral movement of the girders when attached by 

shear studs or flange embedment.   

 

During a deck pour, the concrete has no stiffness but the permanent metal deck forms (PMDF) 

do have significant stiffness and strength.  In building construction it is standard practice to use 

the PMDF as beam bracing when the ribs are perpendicular to the beam because the PMDF is 

attached directly to the top flange through the field welding of the shear studs. 

 

In bridge constriction, the connection of the deck forms require leveling angles to account for 

flange transitions or differential camber.  The leveling angles introduce flexible connections that 

reduce the effectiveness of the forms for bracing; however the forms still do provide some help 

to the girder stabilty.  A report [4] on a stability failure during a deck pour indicated that PMDF 

increased the girder buckling capacity 50% compared to an unbraced girder, but the increase was 

insufficient to support the entire deck weight.  Field tests [24] on a U-shaped girder with the 

PMDF attached directly to the flanges with powder-actuated fasteners showed good 

performance. Improved PMDF attachment details have been successfully implemented on short 

span bridges [36, 37] that eliminated all the intermediate cross frames.  Currently, AASHTO 

does not allow the Engineer to consider the stability that can be provided by the PMDF’s, as 

discussed in Section 6.7.4.1 of the AASHTO LRFD Specifications. 
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3.0 BRACING OF TUB GIRDER SYSTEMS 

 

U-shaped steel girders (tub girders) composite with a hardened concrete deck form a closed- box, 

torsionally strong bridge system.  A typical cross section of a twin tub girder system is shown in 

Figure 30.  Single tub girder systems are sometimes used for single-lane bridges. Prior to the 

development of composite action, the tub girder itself is a torsionally-weak, open steel section 

that must be braced to support the erection and construction loads. The three typical types of 

bracing systems are: interior diaphragms (ID), a top flange lateral truss (LT) and external 

intermediate cross frames (EC) between adjacent tub girders (see Figure 31). 

 

Figure 30  Twin Tub Girder System 
 

 

The three bracing systems used with tub girders are designed to achieve one or more of the 

following objectives mainly during the construction stage: 

1. Control box girder distortion (ID) 

2. Control lateral buckling of the individual top flanges (ID, LT) 

3. Increase the torsional stiffness and strength (LT, EC) 

4. Control global lateral buckling of the tub girder (LT) 

5. Support sloping webs in trapezoidal cross sections (ID, LT) 

6. Control warping normal stresses (ID) 

7. Maintain alignment in multi-girder systems (EC) 

 

 
Top lateral bracing system 

External intermediate 

cross- frame system 

Internal diaphragm 

bracing system 

 
Figure 31  Types of Bracing Systems for Tub Girders 
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In the following sub-sections, the three types of bracing systems will be discussed and design 

methods presented for spacing and proportioning the brace members. 

 

3.1 Top Flange Lateral Truss 

 

Horizontally curved tub girders are subjected to significant torsional loading that open steel 

sections cannot support by warping strength alone.  By tying together the two top flanges of a tub 

girder with diagonals and struts to form a top flange lateral truss, the cross section becomes 

quasi-closed. When designing the top lateral bracing system, two major criteria must be 

considered, torsional rigidity and torsional strength. Torsional rigidity is related to the torsion 

constant J which is greatly enhanced by the top lateral system. A diagonal with an area of a few 

square inches will increase J by more than a thousand times (Eq. 4/ Eq. 3) if the top flange lateral 

truss is converted to an equivalent plate thickness, teq. As indicated by the expressions, the 

equivalent thickness is a function of the area of the diagonals, struts, the top flange areas, and the 

web areas.  The top lateral members must have sufficient areas so that warping normal stresses 

can be neglected and torsional deformations can be kept small. The areas of the members must 

also be sufficient to resist the torsional forces imposed on the system. Vertical bending of the tub 

girders during construction can also develop forces in the top lateral system. 

 

 
Figure 32  Geometric Layout and Equivalent Plate Thickness of Top Lateral Systems [39] 

 

Three common geometric arrangements for the top flange lateral truss as shown in Figure 32 are 

the Warren, the Pratt and the X-type. The Pratt system is usually oriented so the diagonals are in 

tension. In the Warren system the diagonal at the location of maximum torque is usually oriented 

to be in tension.  To maximize teq, the slope of the diagonals relative to the longitudinal axis of 

the girder should be between 35 and 40 degrees [38].  The truss arrangement should have an 

even number of panels within the span for the best performance especially for the Pratt and 

Warren types. The panel spacing is controlled by geometry or the unbraced length of the top 

flange. 
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The formulations for teq given in Figure 32 were derived by Kollbrunner and Basler [39].  If teq 

of all three geometric arrangements are the same, the angle of twist will be the same but the 

forces in the top lateral systems will vary as discussed in the next sub-section. To achieve the 

same torsional rigidity, the X-type requires the smallest total Ad within the panel and the Pratt 

system the largest. If the X-system diagonals are designed for tension only, then only one 

diagonal should be considered effective and teq is determined using the Pratt formula. Frequently, 

publications incorrectly define At in the teq formulations as the area of the top flange, Af.  When 

the top lateral truss is located below the top flanges, w is redefined as the width of the truss. 

 

AASHTO [1] suggests as a guideline that Ad ≥ 0.03w (all units in inches) in curved tub girders. 

This recommendation was developed by Heins [40] on the basis of limiting the warping normal 

stresses, fw, to less than ten percent of the maximum bending stress, fb. As teq increases, the 

warping normal stresses decrease.  Heins [40] determined that if teq ≥ 0.05 in. for rectangular tub 

girders with a width-to-depth ratio, w/d ≤ 2 and a radius of curvature, R ≥ 400 ft, the ten percent 

limit would be satisfied. The teq value reduced to 0.03 in. for w/d =1. The teq ≥ 0.05 in. limit was 

converted to an Ad limit for an X-type system by ignoring the At term in the denominator of the 

teq expression in Figure 32 and assuming s = w (a 45˚ slope for the diagonals), which gives teq = 

1.84 Ad/w.  For teq ≥ 0.05 in., Ad ≥ 0.027w and is rounded to 0.03w in AASHTO [1]. This 

guideline is only applicable for X-type systems with two effective diagonals within the panel. 

Making the same Heins’ assumptions for the Pratt and Warren systems would require Ad ≥ 

0.054w. Recent case and parametric studies (ac.)(ad.) on single diagonal top lateral systems 

using 3D-FEM have shown that the  fw/ fb ratio is directly proportional to the L/R ratio for a 

constant teq. For bridges with L/R ≤ 0.3and 0.03≤ teq ≤ 0.05, the warping normal stresses were 

less than 2% of the bending stress which shows that the warping effect is small when a realistic 

top lateral system is in place.   

 

Wind and other lateral forces during the construction stage also can cause torsion in a tub girder 

because the shear center of the quasi-closed section is generally located below the bottom flange.  

The location of the shear center for a single tub or quasi-closed section is given in the Section 

4.3.  The applied torque is the resultant lateral force times its distance to the shear center. In 

straight tub girders with perpendicular supports, torsional loads do not dominate so a full length 

top lateral system may not be necessary. Lack of a top lateral system, however, makes the tub 

girder more susceptible to global lateral buckling as discussed later. If the supports are skewed, 

torsion must be considered. 

 

3.1.1 Top Lateral Brace Forces 

 

The forces in the members of a top lateral truss system can come from torsion, vertical bending, 

lateral bending, cross-section geometry, distortion and stability effects. Except for relatively 

straight girders, torsion effects dominate the forces in the bracing members. Figure 33 shows the 

forces determined from 3D-FEM analyses for a curved 180 ft simply-supported with three 

different top lateral truss arrangements [41]. The three different layouts consist of an X-type, a 

Pratt, and a Warren truss layout.  The teq = 0.05 in. is the same for all three systems. The brace 

member sizes within each arrangement are different in order to achieve a similar teq but are 

constant along the span.  Only gravity load (steel and concrete deck self-weight) during 

construction was applied and there are no distortion forces, lateral forces or stability effects 
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included in this comparison. The torsional forces in a lateral truss system are not significantly 

affected by the truss member sizes but the plots show that the forces in the three systems are 

different. 

 

In the X-system two diagonals are considered effective within each panel.  For clarity the forces 

in the two diagonals within each panel, designated as diagonal 1 and diagonal 2, are plotted 

separately at the center of each panel along the span. For torsional loads only, the two diagonals 

should have the same magnitude of force, one in tension and the other in compression.  At the 

left support, which is the location of maximum torque, the magnitudes of the two diagonal forces 

differ slightly but the disparity increases away from the supports because of in-plane bending. 

Although the tub girder alone is usually designed for the total bending gravity force during 

construction by neglecting the top lateral truss, the top flange bending strain will induce forces in 

the diagonals for strain compatibility. The bending forces are maximum at midspan and small 

near the simple supports.  On the other hand torsional moments are maximum near the supports 

and zero at midspan so the diagonal forces at midspan are caused mainly by bending. Both 

diagonals within the panel have a 30 k compressive force at midspan. Note also that the 

maximum compressive force in a diagonal does not occur at the supports or midspan but at the 

fourth panel from each end.  The largest compressive force is 25% higher than the maximum 

tension force in this example. Design approaches for X-type systems will be discussed later in 

this section.  

 

The diagonals in the Pratt and Warren systems show similar force distributions along the span. 

The diagonals of the Warren truss alternate between tension and compression in adjacent panels, 

whereas the Pratt system has only tension in this example. The maximum diagonal force occurs 

at the end panels due to torsion and is approximately twice that in the X-type system since there 

is only one diagonal in each panel.  At midspan the Warren system has a maximum compressive 

force of 10 kips and the Pratt system almost zero so the bending effect in these two systems is 

much smaller than in the X-type arrangement.  In both of these single diagonal systems, lateral 

movement of the two top flanges occurs in the same direction due to bending, which reduces the 

in-plane axial stiffness of the top lateral truss. In the Warren system the lateral displacements 

(0.08 in.) occur in a local two-panel zigzag pattern along the span whereas the lateral 

displacements of each panel in the Pratt system accumulate in the same direction with a 

maximum lateral displacement at midspan (0.96 in) [42] as depicted in Figure 34. These lateral 

displacements induce local lateral bending stresses in the two top flanges of the tub girder at each 

strut location in the Warren system [7]. In the Pratt system, the local top-flange lateral bending 

effect is concentrated only at midspan where the truss diagonals change their orientation.   

 

The strut force magnitude and distribution vary among the three systems. The struts are also 

usually part of the internal diaphragm system designed to control cross-section distortion and/or 

flange lateral buckling. No internal diaphragms were used in the span analyzed for Figure 33 in 

order to isolate certain types of forces in the top lateral system.  In this case the strut forces can 

be due to torsion, bending and sloping webs. In all three systems the horizontal tension force that 

prevents the two flanges from spreading apart due to wet concrete load applied at the top flanges 

is a constant along the span and is usually quite small. The main strut forces are developed from 

torsion and bending.  The strut forces due to torsion are zero in the X-type, are related to the 

algebraic sum of the transverse component of the two diagonal forces adjacent to the strut in the 
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Warren system and are equal to the transverse component of the larger diagonal force framing 

into ends of each strut in the Pratt system(except at midspan). In the Warren system the strut 

forces due to torsion alternate from tension to compression along the span and are relatively 

small compared to the compressive strut forces in the Pratt system. Tub girder bending causes 

the large tensile forces in the struts near midspan of the X-type system (30 kips), 10 kip tensile 

forces in the Warren system and almost zero force in the Pratt system. In the Warren system the 

strut forces from all three sources (sloping webs, torsion and bending) are small and fairly 

constant along the length compared to the large strut forces generated in the X-type and Pratt 

systems.  

 

The forces shown in Figure 33 do not include stability brace forces because a first order 

structural analysis was performed. Stability brace forces develop from the initial out-of 

straightness of the structural components.  These forces and deformations are not included in a 

first order structural analysis. A top flange lateral truss system is a relative brace system that 

defines the unbraced length of the top flanges as the distance between panel points during the 

construction stage. For design the stability brace force requirements shown previously should be 

added to the first order analysis forces from torsion and bending. Usually the stability brace 

requirements will not alter the top lateral truss design because the largest stability forces occur at 

the location of the highest moment where the torsional forces are small. The stability brace 

requirements will only affect the top lateral design when the girders are relatively straight.  
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Figure 33  Top Lateral Truss Forces for Various Tub Girder Bracing Systems 
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Figure 34  Deformations of different box girder bracing systems 

 

3.1.2 Selecting the Top Lateral Layout 

 

The layout of the top lateral system is based primarily on effectively resisting the torsional forces 

during construction. Usually the member sizes are kept constant along the span to minimize 

fabrication and detailing costs so the panels with the largest torsional moment near supports 

controls the initial member sizes. The diagonal forces within each panel due to torsion are similar 

for all three lateral systems.  The Pratt system with the diagonals arranged for tension will 

require the smallest diagonal area. The X-type diagonals, one in tension and the other in 

compression, and the Warren system diagonals are controlled by compression. The two X-type 

diagonals will have a smaller total weight than the single Warren diagonal because the force and 

the unbraced length of the X- diagonal is one half that in a single diagonal system due to the 

bracing effect of the tension diagonal. The Warren compression diagonal would be designed for 

the slightly lower torsional moment in the panel adjacent to the one with the highest torsion 

where the diagonal is in tension. On the other hand the strut forces from torsion are the highest in 

the Pratt truss and are zero in the X-type.  The net effect based on brace system weight alone 

favors the Pratt tension system by approximately twenty percent over the Warren system. An X-

type system over the entire span is the most costly because of the greater number of pieces and 

connections.  

 

The Pratt system is attractive for simple spans because it appears that the diagonals can be 

oriented in a tension only arrangement as shown in Figure 33 and the bending compatibility 

forces are negligible. However, even in a simple span, compression can develop if the pouring 

sequence starts at one end of the span.  For example the girder in Figure 33 will develop 

compressive top lateral loads (maximum value of 10 kips) in the three panels near midspan when 

half the span is loaded. Evaluation of the pouring sequence is important in Pratt systems. In 
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continuous spans it is more difficult to ensure that tension will always control in each panel. This 

dilemma can be overcome by using a few X-type panels in locations where compression may 

develop in conjunction with the Pratt arrangement.  The Warren diagonal design, which is 

controlled by maximum compression, offers more flexibility to handle variations in the pouring 

sequences that often occur in the field. 

 

Torsional rigidity, which is affected by teq, should also be evaluated when designing the top 

lateral bracing system. As discussed earlier, for a targeted teq the X-type arrangement requires the 

least bracing weight, followed by the Warren and the Pratt systems. Comparing the Warren and 

the Pratt system designs for the maximum loads given in Figure 34, the Pratt was 17 % lighter. 

The teq from the formulas in Figure 31 were 0.023 for the Pratt truss and 0.039 for the Warren 

truss indicating less rigidity for the Pratt system. For the Pratt truss design, a 3d-FEA analysis of 

the uniformly-loaded simple span gave a midspan rotation 2.3 times greater than the rotation 

with the Warren design. This rotation of the Pratt-system girder gave a 1.6 in. relative vertical 

displacement between the two top flanges of the tub girder. When torsional rigidity is a principal 

concern, both the Warren and X-type systems will be lighter than the Pratt arrangement with the 

Warren being more cost effective.   

 

The X-type top lateral truss attracts larger bending compatibility forces than the Warren or Pratt 

systems as shown in Figure 33 because its geometric symmetry provides greater in-plane lateral 

stiffness.  If these girder-bending induced forces are considered in design, the member sizes may 

be controlled by bending, not torsion.  At locations of the highest girder bending stress where the 

torsional moment may be small, both diagonals within the panel can have compressive loads. In 

this case a diagonal is not braced at the intersection point because both diagonal can bend out-of-

plane. The unbraced length is the full length of the diagonal. 

 

3.1.3 Determining the Brace Forces 

 

The forces in the top lateral system due to torsion, girder bending and sloping webs can be 

determined directly if a 3D-FEA is used as illustrated in Figure 33. Field tests have shown [43] 

that the top flange lateral truss and external intermediate cross frames function only during the 

construction stage. Commercial analysis programs usually focus on the behavior of the 

completed bridge and may be difficult to adapt for a staged deck pour during construction. A 3D-

FEM computer program for single and twin tub girder systems specifically designed for the 

construction phase is available [44].  The struts in the top lateral system may also function as the 

top chord of an intermediate cross frame used primarily to control distortion. Distortional forces 

are discussed with intermediate cross frames later in this module. Structural models employed by 

grid analyses do not directly model the top flange lateral trusses. In this section analytical 

methods for determining the top lateral truss forces and the top flange lateral deflection bending 

stresses developed mainly by Fan and Helwig [7] will be summarized. The comparison between 

the forces from the analytical methods and 3D-FEM is very good.  

 

 

 

 

3.1.3.1 Torsion 



 46 

 

An approximate torsional analysis of a quasi-closed box girder can be performed using the M/R 

method (see Analysis Methods or Ref. [8]) to determine the torsional moment along the span 

coupled with the equivalent plate method for determining the geometric properties of the cross 

section. The resulting torsional properties are used in the structural analysis to determine the 

torsional moments in the girders. Once the distribution of torsional moment, T, is known, the 

shear flow, q, within each panel can be determined from Eq. 9 and used to determine the forces 

in the top flange lateral truss. The shear flow acting on the fictitious plate is then transformed 

into diagonal member forces in the lateral truss as demonstrated in Figure 35.  The type of force 

(compression or tension) is important with regard to superimposing the torsionally-induced force 

with the other force components that will be discussed subsequently.  Although a Warren truss is 

shown in Figure 36b, the same expression would be used for the Pratt truss except the forces 

would generally be all tension provided the diagonals are oriented properly.  

 

After the diagonal forces from torsion have been established, the strut forces from torsion, Fs, are 

determined for the Pratt and Warren truss systems as shown in Figure 36. In the Pratt system the 

strut forces are equal to the transverse component of the larger diagonal force framing into the 

ends of each strut except where the diagonals in adjacent panels meet at one point (midspan in 

Figure 33). That particular strut would be in a Warren configuration.    The simple expression for 

the strut force in the Warren truss shown in Figure 36 conservatively neglects the effect of the 

top flange lateral flexibility.  More complex expressions that consider flange flexibility in the 

Warren system have been developed [45] but since the strut forces are small in typical bridges, 

this conservatism will not affect the design. The strut forces due to torsion are zero in the X-type.  

The signs of the forces (tension or compression) must be maintained so truss forces from sources 

can be properly superimposed. 

 

 
 

Figure 35  Diagonal Lateral Brace Forces Due to Torsion in a Tub Girder 
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Figure 36  Strut Forces from Torsion 

 

3.1.3.2 Sloping Webs 

 

The sloping webs of trapezoidal girders also induce a lateral load component on the top flange. 

This lateral load component causes additional top flange lateral bending stress as well as axial 

forces in the struts of the lateral truss. The struts are typically designed to carry the horizontal 

component due to the sloping webs. Historically, some past design aides [8] provided 

recommendations that the top and bottom flanges each support half of the horizontal web 

components of the applied load. Based on this assumption, the half acting on the bottom flange 

does not generate any top flange lateral bending stress or forces in the struts.  While this 

assumption would be relatively accurate for the girder self-weight, the sloping web component 

from external loads from sources such as the fresh concrete deck must be resisted by the top 

flange lateral truss.  This can be demonstrated by considering a free body diagram of the top 

flange with an externally applied distributed load of p/2 applied to each flange.  Figure 37 

demonstrates the transformation of the vertical load into a web shear and a horizontal 

component, f (force per unit length).  For a truss panel length of s, the recommended design 

tensile force for the struts is equal to (f × s). The maximum lateral flange bending moment due to 

the top flange loading is (fs
2
)/12, assuming the top flange behaves as a continuous beam 

supported at the strut locations.  
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Figure 37  Strut Forces from Top Flange Loads 
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3.1.3.3 Vertical Bending 

 

In addition to torsionally-induced forces, the top flange truss also develops forces due to vertical 

bending of the box girder.  When the lateral truss system is attached to the top flanges of the tub 

girder, the longitudinal top flange deformations between panel points from bending stresses 

produces a compatible longitudinal deformation and corresponding force in the truss diagonals. 

As shown in Figure 38, the tub girder and the top lateral truss together resist the vertical bending. 

If the tub girder alone was designed to support the bending forces, the stress distribution through 

the depth of the tub girder would be represented by the dashed line. The forces in the diagonals 

reduce the tub bending stresses shown by the solid line.  These strain- compatibility truss forces 

are generally undesirable since the primary purpose of the lateral truss is for torsional stiffening. 

 

 

 

 

 

 

 

 

 

Figure 38  Tub Girder Vertical Bending Stresses 

 

The bending compatibility forces can be significant as illustrated in Figure 34, especially for the 

X-type top lateral system.  If the X-type redundant lateral system is not considered when 

proportioning the tub girder for bending, then the compatibility forces determined from an elastic 

analysis need not be considered in design. The diagonals can be designed for torsion alone. 

Within a panel the compatibility forces increase the force in one diagonal and decrease the force 

in the other diagonal by the same amount as shown in Fig 34. Torsion alone develops the same 

absolute magnitude of force in both diagonals. If the diagonals are designed only for torsion, one 

of the diagonals will reach its design limit first because of the added compatibility force, say 10 

kips. The axial stiffness of that panel is then reduced and additional compatibility forces will also 

be reduced as additional load is applied to the bridge. The other diagonal in the panel has a 

smaller force than expected; the torsion force minus 10 kips. As additional bending and torsional 

forces are applied to the tub girder, the force in the highest stressed diagonal will not change (it 

is at its strength limit). The diagonal with the lower force will resist the torsion alone but it can 

support an additional torsion force equivalent to the compatibility force (10 kips). The 

compatibility forces do not affect the ability of a panel with two diagonals to resist the torsional 

moments. There may be some initial sag in both diagonals at locations of low torsion, but this 

does not affect structural performance of the tub girder system. Designing for compatibility 

forces in redundant systems is somewhat self defeating. When the brace size increases, the 

compatibility forces also increase.  

 

In the Warren truss and Pratt systems with a single diagonal within each panel, the bending 

compatibility forces must be considered because the system is not redundant. When the single 
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diagonal in compression reaches its strength limit by forces from torsion and bending 

compatibility, only small additional forces can be applied. 

 

Equations for predicting the truss forces induced due to vertical bending of the tub girder are 

available [7] and summarized in Figure 39.  The Warren truss layout also results in a lateral load 

on the flanges that cause the flange stress denoted by fL bend in the figure. The formulations for 

the diagonal forces are related to the strut and diagonal sizes; the larger the members, the larger 

the forces in those members from tub girder bending. The top lateral compatibility forces will be 

compressive in the positive moment regions and tensile for negative moments.  

  

The expressions given in Figure 39 for the Warren system were developed for the specific case 

of internal cross frames positioned in every other panel, which is a spacing of 2s, where s is the 

spacing between the struts of the top flange truss.  Bending induced forces in the top flange 

Warren truss are sensitive to the spacing between the internal K-frames.  When internal cross 

frames are spaced at every panel point of the top flange truss (spacing of s), the bending induced 

top lateral forces are actually larger [45, 46, 47]. The 2s (every other panel point) spacing of the 

internal K-frames in the Warren truss system is recommended.  At the truss panel points between 

the internal K-frames only a strut is provided. The intermediate internal cross –frame spacing 

does not affect the forces in the X-type system.   

  

There are currently no direct analytical solutions for the Pratt arrangement but 3D-FEA has 

indicated that the diagonal and strut forces due to bending are much smaller than those in the 

Warren system over most of the span.  However, at locations where the Pratt diagonals change 

their orientation (maximum bending moment locations), the two adjacent diagonals meet at one 

point in a Warren configuration.  At these locations the bending compatibility forces are 

maximum and similar in both the Pratt and Warren orientations.  
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Figure 39  Bending Induced Truss Forces 

 

3.1.4 Top Flange Truss Details 

 

The number of panels and the orientation of the diagonals can have a significant effect on the 

efficiency of the design as well as the performance of the girder system.  In specifying the 

number of panels along the span length, the angle of the diagonals  defined in Figure 39 should 

be kept within the range 35° <  < 50°.  The upper limit on this range is related to economics 

since larger values of  will lead to more panels which results in more connections and larger 

fabrication costs.  The lower limit on this range is related to the compression behavior of 

diagonals from both torsional and vertical bending.  With a smaller angle of inclination, the 

diagonals become relatively long and therefore possess a lower buckling capacity.  In general, 

diagonals with orientations outside of the recommended range are inefficient and should be 

avoided.   
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Structural T-sections are often used for the diagonals, while angles are commonly used for the 

struts.  For practicality of the connections and safety of the construction workers, the T-sections 

should be oriented with the stem pointing downwards.  The construction personnel often must 

walk on these members during erection and early stages of construction.  In addition, the stem 

should be pointed downward to avoid clearance issues with the metal deck forms.  In detailing 

the connections for the diagonals, care should be taken not to employ excessively thick 

connection plates or shims that will increase the eccentricity of the connection.  The thickness of 

the connection plate should be approximately equal to the thickness of the WT flange.  

 

The strut for the top flange truss frequently serves as the top chord member of an internal cross 

frame if one is provided at the panel point.  To avoid congestion at the intersection of the struts 

and the diagonals, some designers connect the strut to the web stiffener at an eccentricity denoted 

as e in Figure 40. 

 

 

Strut 
e 

 
Figure 40  Strut eccentricity in a tub girder cross section 

 

This eccentricity generally has an insignificant effect on the performance of the top flange truss; 

however the eccentricity should be limited to a maximum value of 3 or 4 inches.  In many cases, 

lowering the strut due to concerns about congestion between the diagonals and the struts is 

unnecessary because of the inclination of the diagonals and the length of the connection.  In 

cases where the Pratt truss geometry is specified, the effects of e are more significant than for the 

Warren and X-type layouts because the strut forces are much higher. With an eccentric 

connection such as the one depicted Figure 40, forces from the diagonal in the Pratt truss would 

be transferred into the web/stiffener of the girder, down to the strut and across the girder, back up 

the web/stiffener of the girder and into the diagonal of the adjacent panel.   

 

3.1.5 Controlling Global Lateral Buckling  

 

Lateral buckling of an I-shaped girder is a well-documented limit state included in AASHTO.  

Either intermediate diaphragms or top flange lateral truss systems are used for braces to establish 

the unbraced length of the compression flange. Global lateral buckling of the tub girder as a 

whole is not as well understood and there are no AASHTO provisions for this phenomenon.  

There have been two total collapses from global buckling of straight tub girders during the deck 

pour [4].  In both cases the girders had frequently spaced internal diaphragms but no top flange 

lateral truss system. 
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Open-section tub-girder cross sections are susceptible to lateral buckling due to the location of 

the shear center (see Appendix), which is well below the bottom flange. Global buckling of tub 

girders is discussed by Yura and Widianto [48]. It is very unconservative (by approximately a 

factor of five) to use formulas developed for single web I-shaped members such as Eq. 10 for 

checking lateral buckling of twin web tub girders. Another unconservative approach is to assume 

that lateral buckling cannot occur if the tub girder is bent about its smallest principal axis. The 

Marcy bridge that collapsed had Iy / Ix = 1.75. A girder with a trapezoidal shape has reduced 

lateral buckling resistance compared to a rectangular girder. 

 

The lateral buckling capacity of tub girders can be determined from a 3D-FEM buckling analysis 

(a free download is available for one such program [44]) or from the classic lateral buckling 

formula for singly-symmetric cross sections [25], 
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where x is the monosymmetric constant. Formulations for x and Cw for an open-section tub 

girder are given in Section 4.4. If Eq. (27) indicates that an open-section tub girder is inadequate 

during the construction stage, a partial or full-length top flange lateral truss system or external 

bracing will be required. The number of internal diaphragms does not affect global lateral 

buckling.  

 

The effect of installing a top lateral X-type truss system along the entire length of a uniformly-

loaded, straight 170 ft simple span tub girder to improve the global buckling strength is 

illustrated in Figure 41. The trapezoidal cross section used in the analysis was similar to the 

Marcy Bridge. The area Ad of the truss diagonals was varied and a 3D-FEM buckling analysis 

performed.  For an open section (no lateral system), the girder buckled at a top flange bending 

stress of 13 ksi. The addition of a top lateral system increases the buckling strength linearly as 

the size of the truss diagonals increases.  Only a very small area for the top lateral bracing 

diagonals is required to increase the global buckling strength to adequate levels. For this 

particular girder, if the bracing area of the X-type system is larger than 0.08 in
2
 (teq = 0.0015 in.), 

then global LTB will occur at a stress higher than 50 ksi.   Single diagonal bracing systems give 

similar results provided that the area of the diagonal is two times the area shown for the X-type 

system.  

 



 53 

 
  

  

L=170 ft  

  

0   
10   
20   
30   
40   
50   
60   
70   
80   
90   

100   

0   0.0005   0.0010   0.0015   0.0020   0.0025   0.0030   
t   eq 

    (in)   

Fcr 

  
  

0   0.02   0.04   0.06   0.08   0.10   0.12   0.14   0.16   
    
  

Ad of X-type System (in)
2 

  

    

  

(ksi) 

  

 
Figure 41  Effect of teq on global buckling on a tub girder section using a X-type lateral 

bracing system 

 

Installing a top lateral bracing along the entire span length for a condition that occurs during 

construction may be expensive.  A study [48] indicated that bracing of the end panels where the 

flange stress is low is much more effective than bracing near midspan where the stress is 

maximum.  The effect of the end panel bracing on the global buckling strength is shown in 

Figure 42. 
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Figure 42  Effect of Partial End Panel Bracing on Girder Buckling Stress 

 

Both the number of braced panels and the ratio of the length of the braced panels at each end, b 

to the length of the girder L are shown. The diagonal areas of the X-type and Single-Diagonal 

systems are 1.05 in
2
 and 2.1 in

2
, respectively, corresponding to the teq of 0.019 inches and 0.012 

inches. To achieve Fcr higher than 50 ksi so that yielding will govern, only bracing of four panels 

at each end is required. Since the teq of both the X-type and the Single-Diagonal systems are 

about the same, the effectiveness of both systems is almost the same.  A global buckling 

parameter study with span, number of braced panels, cross-section proportions and type of truss 

layout as variables and a constant teq = 0.02 in. in the braced panels indicated that Mcr  is linearly 

proportional with the increase of b up to b/L = 0.2. Additional braced panels do not have a large 

impact on the global lateral-torsional buckling strength.  

 

3.2 Intermediate Internal Cross Frames 

 

The primary role of intermediate internal cross frames/diaphragms in tub girders is to maintain 

the shape of the cross section against torsional forces that tend to distort the shape of the box 

girder.  Typical geometric arrangements, commonly called K-, X- or Z-frames, employed as 

intermediate cross frames cross frame are shown in Figure 43. Solid plate intermediate 

diaphragms are typically reserved for support regions.  In the absence of a top lateral system, 

internal cross frames act as torsional braces to control lateral buckling of the top flanges. 

Torsional bracing stability requirements were presented earlier. This section outlines the design 
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requirements for internal cross frames to properly control distortion and provides 

recommendations on detailing practices for the internal cross frames.   

 

K-Frame X-Frame Z-Frame Plate
 

Figure 43  Internal Intermediate Cross-Frame Layouts for Tub Girders 

 

3.2.1 Tub Girder Distortion  

 

Depending on the distribution of the applied torsional loads, the cross-section of a quasi-closed 

tub girder may distort from its original shape.  This distortion of the cross-section can lead to 

significant warping stresses, which are in addition to torsional warping stresses.  Warping 

stresses that develop as a result of distortion of the cross-section are appropriately referred to as 

distortional warping stresses.  While torsional warping stresses in box girders may be relatively 

small, without proper bracing distortional warping stresses can be quite significant.   

 

Forces develop in the intermediate cross frames and other bracing members due to the distortion 

of the box section.  Torsion in box girders is usually the result of either horizontal curvature of 

the girder or unbalanced gravity loading that results in an eccentricity of the load on the cross-

section.  Depending on the type of loading, the torque on girders can be visualized as either a 

horizontal or vertical couple as depicted in Figure 44.   

 

 
Figure 44  Sources of Torsion in a Tub Girder 

 

The torsional moments in curved tub girders determined from the M/R method can be visualized 

as a horizontal couple.  In the cases of unbalanced gravity loading, the effective eccentric loading 

can be idealized as two couples, pure flexural load plus a torque consisting of a vertical couple. 
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Cross-sectional distortion of box girders is induced by the components of the two torsional loads 

that are not directly distributed in proportion to a uniform Saint-Venant shear flow on the cross-

section.  All practical loading cases cause some form of cross-section distortion since the load 

application is never distributed in proportion to the Saint-Venant shear flow.  Each torsional load 

can be divided into pure torsional components (kips per unit length), qh,v,T,  and distortional 

components, qh,v,D as shown in Figure 45.  

 

 
 

Figure 45  Pure Torsional and Distortional Components in a Tub Girder 

 

The pure torsional components are distributed around the cross section in proportion to the St. 

Venant shear stresses.  The distortional components of the applied loads on the right side of the 

figure. yield zero net torque on the cross section. The horizontal and vertical torsional couples 

produce distortional components that are in opposite directions even though both torsional 

couples produce clockwise moments. Therefore, a distortional analysis requires a separation of 

the horizontal and vertical components and a sign convention for the eccentricity (see Figure 46).  

 

 
Figure 46  Sign Convention for eccentricity 

 

An approximate distortion analysis was developed by Fan and Helwig [49] for determining the 

forces, H and V, (see Figure 47) applied to intermediate cross frames. H and V are equal to the 

qhD and qvD distortional unit forces, respectively, given in Figure 45 multiplied by the spacing 
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between intermediate, SK.  These applied forces are applicable for any of the cross-frame 

arrangements shown in Figure 43. For the specific K-frame which is the most common, the H 

and K forces are converted to diagonal and strut forces as follows: 

 

 
Figure 47  Approximate Distortional Forces in Intermediate Cross Frames in a Tub Girder 
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he K-frame diagonal; 

he K-frame strut; 

rames measured along the girder length; 

 LdK=length of the K-frame diagonal; 

 A0=area enclosed by box=(w+b)/2d; 

 w and b = box girder dimensions as depicted in Figure 47; 

 e = effective eccentricity of resultant distributed load; 

 p = distributed load (weight/ft.); 

 M= box girder bending moment; and 

 R = radius of horizontal curvature of box. 

 

The M/R term in the parentheses is directed at the torsional effects of horizontal curvature while 

the ep term in the parentheses captures the effects of eccentric gravity loading.  The plus/minus 

sign on the expressions indicates that the distortion induces tension and compression as indicated 

in Figure 47b.  One diagonal experiences compressions while the other experiences tension.  In 

the case of the strut, equal magnitudes of tension and compression are induced on either side of 

the two diagonals.  Since the struts serve as members of both the internal K-frames and the top 

lateral truss, these members have torsional components from box girder bending, torsion, and 

distortion.  The components due to torsion and bending are uniform across the strut while the 

distortional components have equal magnitudes of tension and compression as indicated by the 

plus/minus sign in Eqn. (29).  The distortional component can therefore be isolated from the 
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bending and torsional component by averaging the magnitudes of the strut force on either side of 

the two diagonals.   

 

Examples demonstrating the use of these preceding equations can be found in Fan and Helwig 

[49] and Helwig, et. al [50]. 

 

 

3.2.2 Internal Cross Frame Details 

 

As discussed in the subsection Vertical Bending, the spacing of the intermediate internal cross 

frames, should be sk = 2s, where s is the panel spacing in the top lateral system in single diagonal 

systems. Not only is the cost reduced by using fewer intermediate cross frames, but the forces in 

the top lateral system are also reduced. The panels adjacent to the cross frames only have a single 

top flange strut. 

 

A K-frame composed of angles is the preferred layout arrangement based mainly on its 

convenience when the interior of the closed box must be inspected. With an X-frame it is 

difficult to travel within the interior. Z-frames with only one diagonal provide less interference 

but the diagonal may be in compression. Since its diagonal is almost twice the length of a 

diagonal in a K-frame, A heavier frame will be required. The intermediate cross should also be 

detailed to minimize fatigue issues since live loads can cause distortion. 

 

3.3 End Diaphragms 

 

Diaphragms are provided at the supports of the tub girders.  The diaphragms are required for 

torsional equilibrium of the girder system.  Diaphragms resist the girder twist at the ends of the 

girders based primarily upon the shear stiffness of the diaphragm if the aspect ratio, Ld / hd, is 

less than 4 [1].  The ends of the girders are typically closed by solid plates and the diaphragm 

that connects the adjacent girders is may be trapezoidal in shape.  The detailing requirements of 

the support diaphragms depend on the aspect ratio of the end diaphragms.  Although the end 

diaphragm is typically trapezoidal in shape and is often bolted to the two adjacent girders, for 

establishing the detailing requirements the effective length of the diaphragm can be assumed to 

be measured as the spacing between the center of the bearings of two adjacent girders as shown 

in Figure 48.  For most tub girder geometries, the practical range of spacing between the bearing 

centerlines and therefore the effective diaphragm length is in the range of 14 ft. < Ld < 20 ft.  The 

lower range of the diaphragm depth so that shear stiffness dominates the behavior is 3.5 feet at 

the lower Ld range (14 ft.) and 5 feet at the upper Ld range (20 ft.).  The end diaphragms are often 

deeper than these lower-bound values so shear stiffness will govern the behavior of these braces. 
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Figure 48  Typical End Diaphragm Geometry 

 

The fact that most end diaphragms have aspect ratios less than 4 is important from a detailing 

perspective.  The end diaphragms usually have top and bottom stiffening plates that increase the 

out of plane stiffness of the diaphragm plates.  Many designers treat the top and bottom plates as 

flanges of a beam and then associate the connection requirements with what is frequently 

required in the beams of a frame.  The flanges of beams in a frame are often fully connected to 

columns to create a “moment connection” between the beam and column.  In the case of the plate 

diaphragms, the primary mechanism of restraint provided by the diaphragm comes in the shear 

stiffness of the plates and connecting the flanges has very little effect on the behavior of the 

system. This is illustrated in Figure 49, which shows a 3D-FEM of the end diaphragm in a twin 

box girder model.  The end connections of the solid diaphragm were modeled with both 

continuous top and bottom plates as well as discontinuous plates.  There was virtually no 

difference in the behavior of the two girder systems [46].  Only in cases where a relatively 

shallow diaphragm with an effect aspect ratio in excess of 4 should designers consider making 

the stiffening plates continuous across the ends of the girders.  In most applications, simply 

bolting the end diaphragm will provide exactly the same behavior as if the top and bottom 

stiffening plates were connected.   

 

 
Figure 49  Non-continuous flanges illustrated by a 3D FEM of the end diaphragm of a twin 

box girder model 
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3.3.1 Diaphragm Strength Design Requirements 

 

There are two criteria that the designer should consider when proportioning the solid end 

diaphragms for box girder applications.  The most obvious consideration is the basic shear 

strength of the plate diaphragm.  The other consideration is related to excessive shear 

deformations at the ends of the beams that can result in rigid body rotations of the girders along 

the length.  The strength limit state is relatively well-understood; however, an expression based 

upon stiffness criteria is also presented in the following sub-section.   

 

Figure 50 shows girder torsional demand that acts on diaphragms and the resulting shears that 

develop as a result of these torsional moments. 

 

T2T1

V V
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Figure 50  Girder end torsional demand that acts on diaphragms and the resulting shears 

 

The moments T1 and T2 are the torsional moments that come as output from the results from a 

grid model.  The girders are generally subjected to vertical gravity loading and although the net 

end reaction will typically be upwards, the diaphragm tends to redistribute the gravity load so 

that more of the gravity load shifts towards the exterior girder.  Figure 50 shows the 

redistribution in the form of a downward shear on one girder and an upward shear on the other 

girder.  The shear, V, represents the design shear for the end diaphragm.  In terms of the girder 

end torques, the shear is: 
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In a curved girder Ld is the difference in the radii of the two girders.  The design approach for 

shear is based upon a uniform shear stress through the depth of the plate.  Referring to the area of 

the diaphragm plate as Ad = hdtd, the shear stress would be given as follows: 
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(31) 

 

Based upon a uniformly distributed load on a simply supported girder, the end torque (neglecting 

the presence of intermediate K-frames) is: 
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(32) 

 

where p is the uniformly distributed load, Li and Ri are the respective chord length and radius of 

curvature of the ith girder, and o is the subtended angle within the span.  This leaves the 

designer with several options to design the plate diaphragm for strength.  The torque from Eq. 

(32) also provides a reasonable estimate of the design torques.  Although the equation was 

derived for a simply supported girder, there is little torsional interaction between adjacent spans 

in box girders since the diaphragms are relatively stiff and the St. Venant stiffness tends to 

dominate the behavior.  Therefore Eq. (32) provides reasonable estimates of the end torques on 

each girder.  Alternatively, analysis results can also be used such as getting the torques from a 

grid analysis.  With the end torques in the two adjacent girders, the diaphragm shear V can be 

found using Eq. (30) and compared with shear strength (ie. Vn from AASHTO LRFD 

Specification [1]).  For example if the web slenderness satisfies the requirements for full shear 

yielding, the material shear = 0.58Fy can be applied with Eq. (31) to give:   
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(33) 

 

where Fyw is the material yield stress of the web of the diaphragm.  For a diaphragm web not 

satisfying the slenderness limits for full yielding, the appropriate expression for shear buckling 

can be utilized.   

 

3.3.2 Diaphragm Stiffness Design Requirements 

 

Instead of the diaphragm strength limit, an alternative limit on the diaphragm may be shear 

deformation.  Relative vertical deformation between the adjacent girder flanges can also occur 

due to deformations in the end diaphragms.  To develop a deformational limit, some geometrical 

approximations of the portion of the end diaphragm restraining girder twist must be established.  

Although the diaphragm itself is usually viewed as a trapezoidal plate, since the plate is fully 

bolted to the two girders with slip critical bolts, the portion of the diaphragm resisting girder 

twist can be idealized as a rectangular plate extending form the middle of the two girder bearings 

as depicted in Figure 51 for a total diaphragm effective length of Ld. 

 

 
Figure 51  Idealized Rectangular Diaphragm Plate 
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Figure 52 shows the girder end deformations at the diaphragm and then the resulting 

deformations of the idealized rectangular diaphragm plate.  As discussed above, the girder 

deformations result in a rigid body deformation that causes a relative vertical movement between 

the two flanges of the box girder.  The vertical flange deformations are f in Figure 52.  The 

relative value between the two flanges is then given by the expression: 

 

 Re l dia. = 2f = 2oxr 
(34) 
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Figure 52  Girder and Diaphragm Deformations 

 

where o is the end twist due to the shear deformations in the end diaphragm, and the distance xr 

is defined in the figure.  Since the end diaphragm deformations result in rigid body movements 

of the entire girder, these deformations are very undesirable and should be kept to a minimum.  

As a result the diaphragms should be made relatively stiff to avoid large relative movements 

between the adjacent girder flanges.  A value for the tolerable relative movement is a matter of 

judgment. In Ref. [50] a value of 0.5 in. was selected to control variations in the slab thickness 

due to girder flexibility along the span. Since a rigid body rotation at the supports contributes to 

the midspan relative deflection, the support deformations must be kept to a minimum.  A limit of 

2f < 5% x0.50 in. = 0.025 in. at midspan was chosen. In Ref, [49] the f = 0.0125 in. limit was 

transformed into the following stiffness limit for the area of the diaphragm:  
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The controlling diaphragm area would be the larger value from Eq. 33 or the strength criteria 

discussed in the previous sub-section.   
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3.4 Intermediate External Cross Frames 

 

The primary role of the intermediate external diaphragms is to control the relative deformation 

between adjacent curved girders during casting of the concrete bridge deck.  In cases where the 

external bracing is not removed after construction, the external bracing will also contribute to the 

load transfer between adjacent tub girders.   In a twin girder system depicted at midspan in 

Figure 53, Girder E is the exterior girder with the longest individual span.  The girders will twist 

independently during construction if there are no intermediate external cross frames connecting 

the two girders with Girder E having the larger angle of twist and vertical deflection compared to 

Girder I on the interior.  Since the girders have some flexibility, there will be a relative vertical 

displacement rel between points B and C in (c) that causes a variation in the deck thickness and 

reinforcement cover. The dashed lines in (b) and (c) represent a straight line between the 

finishing machine rails at points A and D.  The displacement rel must be controlled within some 

practical limit. Stiffer girders (larger teq) can be one approach but may be cost-prohibitive and 

very stiff girders pose greater problems with bolted field splices during erection. External 

intermediate cross frames shown in (b) can be used to improve the constructability.  Studies [46, 

51] have shown that only one or two cross frames near midspan are sufficient to control rel.  
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Figure 53  Relative Deformation between Adjacent Girders 

 

Cross frames should be concentrated towards the middle of the span instead of spreading the 

braces out equally along the bridge length.  Although the deformations often don’t differ 
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substantially with the addition of several braces, the forces induced in the intermediate cross-

frames will be smaller as more braces are added.  However, the forces in the intermediate cross-

frames from the construction loading are often relatively small except for spans with sharp 

curves (R< 250 ft).  With skewed supports, the forces in the cross frames do become larger.  

Unless the support skew becomes large (greater than approximately 30 degrees), the forces can 

often be handled with members satisfying slenderness limits.   

 

External intermediate K-frames are primarily needed on horizontally curved girders.  In straight 

girders, if diaphragms are provided at the supports and a top flange lateral truss is utilized, the 

girders are very stiff and intermediate external diaphragms can be omitted.  Diaphragms would 

be needed if a large unbalanced load (ie. large torque) is applied or if the supports have 

significant skew.  The problem with the large support skew is that the ends of the girders may 

tend to twist due to the angled diaphragm.  The twist at the support results in a rotation of the 

girders that can result in problems with the uniformity in the slab thickness as outlined earlier.  

Most practical applications of straight girders do not need external bracing.  

 

In most situations, external intermediate K-frames can be removed once the concrete deck 

hardens because field tests have shown that external K-frames have very little impact on live 

load distribution.  The cross frames are most often removed due to fatigue concerns.     

  

3.4.1 Analysis Approaches for Intermediate External Diaphragms 

 

The treatment of the external braces in the structural analysis as well as the accuracy of the 

resulting forces depends heavily on the analysis method that is used.  If a 3D-FEM is utilized, the 

braces can be modeled relatively accurately and the member forces can be obtained directly from 

the analysis.  However, incorporating the external K-frames into a grid model poses a 

complicated geometrical problem.  Although the internal and external K-frames are trusses made 

up of several members, the grid models treat these braces as a line element that spans between 

the centerlines of the adjacent girders.  Therefore estimating the stiffness of these external braces 

can be difficult.  In addition, the analytical estimates of the intermediate diaphragm moments 

from a grid model may often be of questionable accuracy.   

 

Another possible analysis approach is to designate the intermediate external K-frames solely as 

members to help control the constructability of the slab.  With this approach, the analysis would 

be carried out only modeling the girders and solid diaphragms at the supports.  The girders and 

support diaphragms would therefore be sized to support the entire load.  This will often result in 

larger member sizes for the top flange lateral truss, when compared to an analysis that includes 

the external braces; however the economics of the top flange truss should not change too 

dramatically.  The cost of the top flange truss is mainly related to fabrication costs, which are 

often primarily a function of the number of pieces required to fabricate.  Increasing the size of a 

member by a few pounds per foot should not have too large of an impact on the design 

economics, however the behavior and safety of the design are much easier to predict with this 

approach.  As mentioned above, a few external cross-frames concentrated near the middle of the 

span often provide excellent control over the relative twist between adjacent girders.  In the 

following sections, approximate methods developed in [50] will be summarized that can be used 



 65 

to determine the number of external cross frames needed to control constructability and to 

predict the member forces in the external cross frame.  

 

3.4.2 Spacing of Intermediate External K-frames 
 

The approximate approach outlined is for determining how many intermediate cross-frames are 

needed.  The spacing equation is based on the following assumptions: a simple- span twin curved 

girder symmetrical system with radial supports, no relative twist between the two supports of the 

span and the two girders have similar cross-section properties. The vertical and horizontal 

deflections at the web-top flange intersection at midspan for points B and C from vertical load 

applied at the top flanges of the quasi- closed sections were determined. These calculations 

required that the angle of twist of each girder, which is a function of the individual span lengths, 

be determined along with the vertical displacement of both girders. Since the cross-sectional 

properties of the two girders is the same, the difference between the perpendicular displacements  

of  points B and C relative to a straight line between screed rails, rel, is mainly a function of the 

difference in span lengths between the two girders and the identical cross-sectional properties. 

The difference in span lengths is related to the spacing between the two girders, (w + g), and the 

subtended angle o = L/R of the bridge plan. With some minor assumptions associated with the 

relative location of the screed rails on typical tub girder geometries, the relationship of the span 

length between external cross frames and rel is 
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For design the maximum permissible deviation in slab thickness rel can be set equal to some 

maximum value, say 0.5 in., to determine Lmax. If Lmax is greater than the span length, no external 

intermediate cross frames will be required for constructability. 

 

3.4.3 Forces in Intermediate External K-frames 
 

To develop expressions for the forces in the external diaphragm, the case of a single external K-

frame located at midspan will be considered.  The lengths, Li and Le, of the respective interior 

and exterior girders in these derivations are taken as the total arclength of the respective girders 

between the supports.  The external diaphragm help to restrain twist and vertical deflections of 

the box girders at the location of the braces.  The basic geometry of the external K-frame and 

box girder system are shown in Figure 54.  The angle of the diagonal of the K-frame is 

represented as , while the depth of the K-frame is denoted as hK.  The rotation of the two 

girders and the K-frame system are assumed to be the same and are represented as .  The 

distance from the center of a girder to where the top chord of the K-frame connections is shown 

as LT.  The distances hK and LT will be used to represent the torque exerted by the external K-

frame on the girders.   
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Figure 54  K-frame Geometry 
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Figure 55  External K-Frame Forces 

 

The K-frames exert restraining forces H and V on the girders in the respective horizontal and 

vertical directions.  The equal and opposite forces that act on the K-frame are depicted in Figure 

55a.  The corresponding member forces that develop in the K-frames are depicted in Figure 55b.   
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TDB FFF  cos
       (39) 

 

The variables in the above equations can be calculated as follows: 

 
  sincos TKK LhL   
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Comparison of the member forces with the forces from 3-D FEM show reasonable agreement 

[46]. 
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4.0 BRACING MEMBER DESIGN AND CONNECTION DETAILS 

 

4.1 Design of Tees and Angles 

 

For tension and compression members, the 2014 AASHTO Specification [1] has adopted the 

limit state provisions from the 2010 AISC Specification [16] and added mandatory L/r 

limitations.  Except for axial compression (=0.9), all other -factors in AASHTO [1] are larger 

than their counterparts in the 2010 AISC Specification [16].  Therefore, the use of the design 

capacities in the AISC Manual [52] for tension members and their connections is conservative.  

If desired, engineers can adjust AISC Manual [52] tabulated values in the ratio of the respective 

-factors (AASHTO/AISC).  For compression members, the design strengths in the AISC Manual 

are directly applicable.   

 

4.1.1 Tension Members 

 

Single angle, double angles, and tee-sections in tension are checked for the limit states of 

yielding on the gross section, fracture on the net section, block shear at the end connections and 

limiting slenderness ratio.  When evaluating the slenderness ratio, any bracing member required 

to enable a main member to support the applied loads should be treated as a primary member.  

That is, if the main member cannot support the design loads without the bracing member, then 

the bracing is not a secondary member.  Single and double angle members are usually connected 

at the ends through one of the legs.  The eccentricity between the end connection and the angle 

centroid has little structural significance and is typically ignored.  Tees are mainly connected 

through the flange.  The bracing members are connected to the main member by connection 

plates on the webs or directly to the flanges.  The eccentricity between the connection and the 

member centroid has little structural significance for tension members and can be ignored.  Also, 

the U-factor reduction in the net section fracture capacity in AASHTO Section 6.8.2.1-2 [1] was 

developed from test data with specimens that had eccentricities.   

 

4.1.2 Compression Members 

 

4.1.2.1 Single angles 

 

The methods specified in various design codes for the design of single angle compression 

members loaded through one leg can be divided into two categories: column approaches and 

beam-column approaches. The column approach, which is the simplest for design, was given in 

the first edition (1971) of the ASCE Standard 10-97, Design of Latticed Steel Transmission 

Towers
 
[53]. Based on the results of many angle tests and full size tower tests, angle design was 

based on axial load only with an adjusted L/rz used with the normal column formula to account 

for eccentricities and end restraint. The British, European, South African and Japanese steel 

design specifications use similar column approaches. The main variable among these different 

standards is the axis used to define the critical column slenderness ratio. The ASCE method uses 

the minimum principal radius of gyration, rz.  

 

Prior to 2005, AISC [54] specified a beam-column approach that required the eccentricity to be 

defined explicitly about both principal axes and also consider second-order effects. For unequal-
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leg angles the orientation of the principal axes makes the geometry even more complex. Over the 

past thirty years, numerous experimental studies have shown the AISC method to be overly 

conservative [55]. Test loads 2-3 times greater than the AISC limit load are usually reported. The 

evaluation of the AISC beam-column approach is best summed up by the following statement in 

Ref. [56] “This [54] approach is not widely used by design engineers, since it provides a very 

conservative estimate of the load-carrying capacity and since it involves tedious calculations for 

a member that most engineers consider to be a very simple member”.  

  

In 2005 the AISC Specification [16] adopted a new design approach based on the ASCE 10-97 

[56] Standard for angles loaded through one leg. The ASCE method is based mainly on tests 

with small (2.5 in.) equal leg angles. Tests with larger angles and unequal legs [58] showed that 

the capacity with the short leg connected was approximately 80% greater than tests with the long 

leg attached. The ASCE method predicted the same capacity for both cases since rz is constant 

for both arrangements. Also, tests have shown that the dominant deformation is bending about 

the centroidal axis parallel to the attached leg, which will always be called the x-axis, so L/rx 

should be the controlling slenderness ratio. This dilemma was resolved by noting that the rz/rx 

ratio for all equal leg angles have little variation with a narrow range of 0.61-0.65. Taking rz/rx = 

0.63, the ASCE effective slenderness of KL/rz for typical tower framing details (not highly 

restrained) was directly converted to an equivalent KL/rx formulation [58]. A sample conversion 

is as follows ASCE [57]: 

 

 For 0  L/rz  120,  KL/rz = 60+0.5(L/rz)  ≡  0  L/rx  75, KL/rx = 60+0.8(L/rx) (40) 

 

There is an additional equation for longer members. Using rx instead of rz made the ASCE 

formulation reasonably accurate for both equal and unequal leg angles. Equation (a) should be 

applicable to typical end connections but AISC introduced additional conservatism by 

developing a set of similar equations that were fit to test results on angles with knife-edge end 

supports (zero restraint). AISC applies Eq. (a) to angles that are web members in space or box 

trusses. As expected, the AISC formulations are conservative compared to other national codes 

[55] but are still easier and more accurate than the earlier beam-column approach. AASHTO [1] 

has adopted the new AISC method [16] for single angle compression members loaded through 

one leg but only with the zero restraint condition. See AASHTO section 6.9.4.4 [1].  

 

base plate
 

Figure 56  Typical Test End Connection 
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The column approach is based on angle tests with similar small end eccentricities in the plane of 

the outstanding leg at both ends, e.g. the connection plate thickness was similar to the angle 

thickness. A typical test connection detail is shown Figure 56.  If filler plates are used at the 

connections, the increased eccentricity should be considered and Section H2 of the AISC 

Specification [16] used for design. A summary of stability issues for angle members is given in 

Ref. [59] and Chapter 11 of the SSRC Guide to Stability Design Criteria for Metal Structures 

[25].   

 

4.1.2.2 Tees and Double Angles 

 

A tee flange is normally attached to a gusset or top flanges by welding or bolting as shown in 

Figure 57.  The eccentrically loaded tee is subjected to a concentric load, P, and an end moment, 

eP, where e is the eccentricity.  Unlike tension members, the effects of the eccentricity must be 

considered in the design of the brace because the compressive load amplifies the moments and 

deflections.  In tension members, the bending deformations and moments along the span are 

reduced by the tension force.  Designing tees and double angles for combined bending and axial 

load by directly applying all the required design checks with the AISC Specification [16] is a 

formidable task that is similar to the former design method for single angles described in 4.1.2.1.  

Unfortunately, there is no similar effective slenderness ratio method for tees or double angles.  

Gordon [62] has developed tables of correction factors to the concentric column capacity for all 

rolled WT shapes assuming a ½ in gusset thickness.   

 

The AISC approach is very conservative for singly-symmetric members.  The principle reason 

for the conservatism relates to combining bending and stability into one set of interaction 

equations.  There are two general behavioral phenomena for any member subjected to axial 

compression and simultaneous bending in one plane:  in-plane bending that includes column 

buckling in that plane and out-of-plane buckling that includes stem buckling, lateral torsional 

buckling, and flexural (column) buckling.  The AISC interaction equations are accurate for in-

plane bending of doubly-symmetric sections.  For W-shapes, AISC permits an alternative 

approach of considering out-of-plane buckling separately from the in-plane interaction equations.  

 

P

P
e

 
Figure 57  Eccentrically loaded WT section 

 

For eccentrically loaded tees and double angles, separating in-plane and out-of-plane behavior 

greatly simplifies the design process and gives more accurate and economical designs.  Also, the 

AISC equations treat P and M as independent variables whereas P is the only load variable in a 

brace strut.  Galambos [63] gives the following general equation for elastic lateral-torsional 

 



 71 

buckling of a singly-symmetric section loaded by P and M in the plane of symmetry with the 

largest flange in compression: 

 

(Pey – P)(ro
2
Px – ro

2
P + xM) = (M – Pyo)

2

  

(41) 

 

where,  

 

ro
2
 = yo

2
 + rx

2
 + ry

2
 

 

where Pey is the out-of-plane Euler load, Pz is the torsional buckling load, and yo is the distance 

beween the centroid and the shear center, x is the monosymmetry parameter as defined in 

Galambos [63].  Pz is typically much larger than Pey.  For M=0 in Eq. (41), the flexural-torsional 

buckling load equations in the AISC [8] are obtained.  For P=0, the beam lateral buckling 

solution given earlier in Eq. (10) is determined.  With no moment the lateral-torsional buckling 

load is always smaller than the Euler load.  But with moment present the flexural-torsional 

buckling load can increase.  The moment has a positive sign if the largest flange is in 

compression.  For the particular case of an eccentrically-loaded tee or double angle, the eccentric 

load causes compression in the flange so eP has a positive sign.  The shear center of a tee is at 

the intersection of the flange and the stem.  To illustrate the simplifications that follow the 

eccentric load will be placed at the shear center so the right side of Eq. (41) becomes zero 

(M=Pyo), resulting in the following expression: 

 

(Pey – Pcr)(ro
2
Pz – ro

2
Pcr + xPcryo) = 0

  

(42) 

 

The critical buckling load is either: 

 
The out-of-plane Euler buckling load Pcr = Pey

  

or the pure torsional buckling load:
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There is no flexural torsional buckling so the smallest load is the normal y-axis column buckling 

load.  The torsional buckling load is actually increased by the presense of the moment.  The main 

point of the derivation is to illustrate that the in-plane eccentricity actually improves the out-of-

plane buckling strength.  Parametric FEA studies with greater eccentricities also support this 

statement.  The out-of-plane buckling load is always flexural.   

 
In plane the amplified moment, Mcr = eP / (1 – P/Pex) should be used to determine the bending 

stress at the flange and at the tip of the stem.  Note that the Sx listed in the AISC manual is for 

the stem. The section modulus at the flange tip is Ix / x(bar).  Using the AISC interaction 

equations, the flange and the stem should be checked separately as follows: 

 

Flange Check: 0.1
xy
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P
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Stem Check: 0.1
xy

a

n SF

M

P

P
 

 

Where, Pn is the column capacity based on L/rx.  No Q reduction factors are necessary because 

local stem buckling will not occur as established by FEA (the stem is always in tension).  The 

bending stress is limited to first yield and not 1.6Fy as permitted for pure bending of a tee.  

Yielding of the stem does not affect the out-of-plane Euler load, but any yielding at either the 

stem or the flange will reduce the in-plane stiffness and increase the bending amplification 

factor.  In summary, there are no flexural-torsional buckling equations to check and no web 

slenderness effects.  The use of compact flanges eliminates local flange buckling.  Only normal 

column buckling and an in-plane stress check are needed for safe designs.  

  

4.2 Fatigue Design of Cross-frame Members 

 

Fatigue design must be considered in the design of cross-frame members, especially in 

horizontally curved and/or skewed I-girder bridges, where cross-frames can transmit significant 

live load forces through the structure. In these cases, the fatigue live load forces in the cross 

frame members should be considered in the design of the members and their connections.  

Fatigue cracks in the girders at cross-frame locations are not uncommon as noted by Zhou and 

Biegalski [6].  

 

4.3 Welded and Bolted Connection Details 

 

The AASHTO/NSBA Collaboration publication, Guidelines for Design Details [65], shows 

preferred details for connecting cross frame and lateral bracing members to girders.  

Additionally, the NSBA publication, Practical Steel Tub Girder Design [66], provides bracing 

connection details in tub girders that are based on preferred detailing practices for cost-effective 

fabrication.  In both publications, the details provided do not reflect any specific actual design 

conditions, but are only preferred types of details.   All details require careful analysis and 

consideration, and the preferred details may not always be applicable. 

 

This section contains a number of pictures of details that are not recommended as standard 

practice details.  Generally, if details such as these are used, special consideration must be given 

by the designer with regard to load paths and load transfer through the various structural 

components.  Although the pictures focus on tub girders, many of the basic principles also apply 

to a variety of different bracing systems.  A brief description of the picture is given for each 

detail.   

 

In Figure 58, the WT for the top flange lateral truss on the box girder had an improper 

orientation, and an incorrect size.  The stem of the WT was oriented upwards, which increases 

likely interference with the metal deck forms.  The stem of the WT should point downward so 

that the flat surface of the flange is available for the construction personnel to walk on and also 

so that the WT can be placed very near the top flange.  Also, orientating the WT so that the 

flange is nearer to the top flange decreases the eccentricity between the flange and the WT 

member, and thus decreasing subsequent bending moments in the WT caused by eccentric 
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loading.  A larger eccentricity results in a very inefficient load path for the lateral bracing system 

as the load from the flange is applied to the WT member in a very eccentric manner.  This 

eccentricity must be considered in the design of the lateral bracing member.  Furthermore, in the 

case shown in Figure 58, the diagonals were also improperly sized.  Torsional loads on the box 

produced compression in alternating diagonals that was unaccounted for, and members around 

the supports near the regions of maximum torsion buckled with only the steel dead load acting on 

the girders.   

 

A) WT – Stem up B)  Buckled Diagonal
 

Figure 58  Improper orientation and sizing of WT section used for top flange lateral 

bracing member 

 

In Figure 59, the WT section is properly oriented; however the top strut of the cross-frame is 

located well below the flange to avoid interference between the two members.  The top strut of 

the internal cross frame also participates in the lateral bracing system.  This detail results in a 

very inefficient load path between the two members since force components must be transferred 

through the web between the two members.  The designer must consider how this force is 

transferred in the design of this connection.  As an alterative, the top strut should be located as 

close as possible to the same plane as the lateral bracing system, and ideally, as close as possible 

to the top flange. 

 



 74 

 
Figure 59  Strut offset below diagonal 

 

Many poor bracing details are the result when working lines of the bracing members are forced 

to intersect.  An example of this is the top flange truss that is being fabricated in Figure 60.   The 

picture shows that very large gusset plates were used in an attempt to have the working lines of 

the diagonals and the top struts .intersect.  In the case shown here, the diagonals can cause a 

significant eccentric moment on the gusset plate connection to the top flange, that must be 

considered in the design of this connection.   Better behavior would result if the diagonals were 

offset slightly and bolted directly to the underside of the flange, thereby eliminating the gusset 

connection plates.  Although the working lines may not intersect with this detail, many stability 

bracing systems can be offset from the working points by as much as 10% of the unbraced length 

with very little impact on the structural performance.  For tub girders, the designer can usually 

offset the working line by approximately a flange width with little effect on the performance.  

Connection eccentricities in the plane of the truss have very little impact on the performance of 

the bracing system.   
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Figure 60  Large gusset plates used so working lines of bracing members intersect 

 

As shown in Figure 61, eccentric connection can lead to poor behavior of the lateral bracing 

members.  In this case, a 1 inch thick shim plate was utilized to lower the top flange lateral truss 

to avoid interference with the permanent metal deck forms.  Even though the bolted connections 

were fully tightened, the shim plate increases the eccentricity of the WT section and significantly 

increased the bending of the member.  Under steel dead load, the compression diagonals 

experienced large bending deformations. In this case, the shim plates were unnecessary and led 

to poor behavior of the bracing system.   

 

Eccentricity 

increased by 

shim plate

 
Figure 61  Shim plates can significantly increase the eccentricity of WT sections leading to 

excessive bending 
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Figure 62 shows a partial depth end diaphragm that results in a poor load path that cannot anchor 

the top flange lateral truss.  The top flange lateral truss must be sufficiently anchored to the end 

of the tub girder.  The partial depth end diaphragm was used to accommodate a thickened armor 

joint at the end of the bridge.  However the thin web of the box girders may not stiff enough to 

anchor the very large diagonal forces in the top flange lateral truss.  The torsional stiffness of the 

box is therefore reduced, which can lead to large deformations.    In this case, the load path must 

be considered in the design of this lateral bracing system, or a full depth end diaphragm should 

be used. 

 

 
Figure 62  Partial depth end diaphragm. 
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5.0 SIMPLIFIED GEOMETRIC PROPERTIES FOR TUB GIRDERS 

 

Symbols are defined in Figure 63. 

 

5.1 Shear Center, ey, for Open and Quasi-Closed Sections [60] 

 

 
Figure 63  Calculation of Shear Center for Open and Quasi-Closed Sections 

 

 
 

 
 

 
 

The shear center location ey is measured from the centroid of the bottom flange. A negative value 

indicates that the shear center is below the bottom flange. For open-section tub girders, teq= 0 and 

qa = -btttw. 
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5.2 Monosymmetry Coefficient, x –Open section only [61] 
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where At = bttt and Ab = bbtb. All geometric functions have positive values but x will be 

negative. 

 

5.3 Warping Moment of Inertia, Cw -- Open section only [61] 
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where   ca = eybb,  cb = eyw + dbb, cc = bt(ey – d)  and Aw = dtw 
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